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During hard landing or crash events of a helicopter there are impact loads that can be 

injurious to crew and other occupants as well as damaging to the helicopter structure.  Landing 

gear systems are the first in line to protect crew and passengers from detrimental crash loads. 

The main focus of this research is to improve landing gear systems of a lightweight helicopter.  

Magnetorheological fluids (MRFs) provide potential solutions to several engineering 

challenges in a broad range of applications. One application that has been considered recently is 

the use of magnetorheological (MR) dampers in helicopter landing gear systems. In such 

application, the adaptive landing gear systems have to continuously adjust their stroking load in 

response to various operating conditions. In order to support this rotorcraft application, there is a 

necessity to validate that MRFs are qualified for landing gear applications.  

First, MRF composites, synthesized utilizing three hydraulic oils certified for use in 

landing gear systems, two average diameters of spherical magnetic particles, and a lecithin 

surfactant, are formulated to investigate their performance for potential use in a helicopter 
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landing gear. The magnetorheology of these MR fluids is characterized through a range of tests, 

including (a) magnetorheology (yield stress and viscosity) as a function of magnetic field, (b) 

sedimentation analysis using an inductance-based sensor, (c) cycling of a small-scale MR 

damper undergoing sinusoidal excitations (at 2.5 and 5 Hz), and (d) impact testing of an MR 

damper for a range of magnetic field strengths and velocities using a free-flight drop tower 

facility. The performance of these MR fluids was analyzed, and their behavior was compared to 

standard commercial MR fluids. Based on this range of tests used to characterize the MR fluids 

synthesized, it was shown that it is feasible to utilize certified landing gear hydraulic oils as the 

carrier fluids to make suitable MR fluids.  

Another objective of this research is to satisfy the requirement of a helicopter landing 

gear damper to enable adaptive shock mitigation performance over a desired sink rate range. It 

was intended to maintain a constant stroking force of 17 793 N (4000 lbf) over a sink rate range 

of 1.8-7.9 m/s (6-26 ft/s), which is a substantial increase of the high-end of the sink rate range 

from 3.7 m/s (12 ft/s), in prior related work, to 7.9 m/s (26 ft/s). To achieve this increase in the 

high-end of the sink rate range, a spiral wave spring-assisted passive valve MR landing gear 

damper was developed. Drop tests were first conducted using a single MR landing gear damper. 

In order to maintain the peak stroking load constant over the desired sink rate range, a bang-bang 

current control algorithm was formulated using a force feedback signal. The controlled stroking 

loads were experimentally evaluated using a single drop damper test setup. To emulate the 

landing gear system of a lightweight helicopter, an iron bird drop test apparatus with four spiral 

wave spring-assisted relief valves MR landing gear dampers, was fabricated and successfully 

tested. The effectiveness of the proposed adaptive MR landing gear damper was theoretically and 

experimentally verified. The bang-bang current control algorithm successfully regulated the 
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stroking load at 4000 lbf over a sink rate range of 6-22 ft/s in the iron bird tests, which 

significantly exceeds the sink rate range of the previous study (6-12 ft/s). The effectiveness of 

the proposed adaptive MR landing gear damper with a spiral wave spring-assisted passive valve 

is theoretically and experimentally verified. 
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CHAPTER 1: Introduction  

The purpose of this chapter is to state the motivation for this study and to introduce the 

research objectives.  Once the research objectives are identified, the means by which they are 

met will be discussed. Finally, an outline of this dissertation will conclude this chapter. 

1.1 Research Motivation and Objectives  

During hard landing or crash events of a helicopter and due to existing coupling between 

the fuselage and landing gear systems, there are impact loads that can be injurious to crew and 

other occupants and be detrimental to the helicopter structure.  Landing gear systems are the first 

in line of an Active Crash Protection System (ACPS) to protect crew and passengers from 

detrimental crash loads. One of the main objectives of this dissertation is to improve landing gear 

systems of a lightweight helicopter.  

The landing performance of a lightweight helicopter has evolved in recent years, and 

several more challenges have risen. Nevertheless, landing gear systems have to absorb the 

kinetic energy associated with the helicopter vertical velocity. An important challenge 

encountered is to tune the landing gear damper to operate at different operating conditions. 

Figure 1.1 shows a particular case that motivated this study. In the figure, the landing gear 

damper has to be tuned to operate at two conditions: a low sink rate, 푉 , and a high sink rate, 

푉 , while maximizing the operating sink rate range hence maintaining a constant peak 

stroking load, 퐹 , over a desired sink rate range (from 푉 	to 푉 ); in addition to the energy 

dissipated by the landing gear damper,	푊. 

푊 = ∫ 퐹 (푆)푑푆																																																																				[1.1]  
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Considering a passive solution could be costly in weight and can only satisfy one operating 

condition. For instance, the actual MD 500 helicopter passive hydraulic dampers can only be 

tuned to operate at a single condition (one payload and one excitation level) shown in Figure 1.2 

(a) and (b); hence the MD 500 helicopter passive damper performance is limited. Several landing 

gear systems have been considered over the years that incorporate features such as sensing and 

control through position and velocity measurement systems or through real-time adaptive 

landing gear controllers. Other features adjusting landing gear characteristics in real time have 

been investigated such as piezo valves (Mikułowski et al., 2013). However, controlling the 

behavior of the helicopter landing gear has great benefits. One prospective solution to reduce the 

touchdown impact and satisfy the landing performance challenge is to use adaptive landing gear 

dampers that can continuously adjust their stroking load in response to various operating 

conditions, such as adaptive magnetorheological (MR) landing gear dampers. 

Landing gear systems, which play an important role in preventing the airframe from 

vibration and excessive impact forces and improving passenger comfort and aircraft flight safety, 

are one of the most essential components of the helicopter. In this study, adaptive landing gear 

dampers that can continuously adjust their stroking load in response to various operating 

conditions are investigated for improving the landing performance of a lightweight helicopter. 

MR dampers are considered as a potential solution to satisfy this challenge; however, in order to 

support and encourage this rotorcraft application, there is a need to substantiate that 

magnetorheological fluids (MRFs) are suitable for landing gear applications. First, in this study, 

certified landing gear hydraulic oils are used as carrier fluids to make MRFs. These carrier fluids 

are selected to preserve important parameters in the hydraulic oils and due to their low viscosity 

that is necessary to keep the weight of the MR device low. Also, the landing gear MRF stability 
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is investigated through particle re-dispersion. Then, this study attempts to demonstrate large 

yield force by comparing the newly manufactured MRFs to commercial MRFs performance. 

After investigating the suitability of MRFs for landing gear use, the second part of this study is 

an effort to achieve the landing performance challenge to maximize operating sink rate range of 

a lightweight helicopter. This is achieved by using adaptive MR landing gear dampers with a 

spring-assisted passive valve to decrease viscous forces at higher sink rates. 

In prior work directly related to this study, adaptive MR landing gear dampers for a 

lightweight helicopter that maintained a constant peak stroking force of 4000 lbf across sink rates 

ranging from 6-12 ft/s (1.8-3.7 m/s) were designed, manufactured and successfully tested. In this 

follow-on work, it is desired to expand the high end of the sink rate range, so that the peak 

stroking force could be held constant for sink rates ranging from 6-26 ft/s (1.8-7.9 m/s), thereby 

extending the high end of the speed range from 12 ft/s in the first study to 26 ft/s. To achieve this 

increase in the high end of the sink rate range, a spring-assisted passive valve MR landing gear 

damper is developed. The MR valve is designed to semi-actively control the peak stroking load 

over the 6-12 ft/s sink rate range, whereas the relief valve is designed to passively control the 

stroking load over the 12-26 ft/s sink rate range. Drop tests are first conducted using a single MR 

landing gear damper (with a total drop mass of 430 lbs and 1283 lbs, subsequently). In this study, 

in order to maintain the peak stroking load of the MR landing gear damper constant over the 

desired sink rate range of 6-26 ft/s, a bang-bang current control algorithm formulated using a 

force feedback signal is used. The controlled stroking loads achieved using the force feedback 

control algorithm is experimentally evaluated using a single damper drop test setup over the 

desired sink rate range. To emulate the landing gear system of a lightweight helicopter, an iron 

bird drop test apparatus (with a total drop mass of 2627 lbs) with four MR landing gear dampers 



www.manaraa.com

4 
 

with spring-assisted passive valves is fabricated and successfully tested using the bang-bang 

control algorithm 

1.2 Smart Materials Review: Magnetorheological Fluids 

Discovered by Jacob Rabinow at the US National Bureau of Standards in 1948, 

magnetorheological fluids (MRFs) are a class of fluids that display variable yield stress. 

Simultaneously Willis Winslow was working on a competitive fluid technology called 

electrorheological fluid (ERF). Additional research was performed more on ERFs than MRFs. 

Although there are some similarities between the ERFs and MRFs technologies, such as the 

change in the fluids rheology under the application of a field (electric field for ERFs and 

magnetic field for MRFs), the dissimilarities are considerable. Table 1.1 presents an overview of 

the key features of ERFs and MRFs.  

MRFs are suspensions of micron-sized magnetic particles, such as iron (Fe) or cobalt, in 

a silicone or hydraulic oil carrier fluid (Carlson and Jolly, 2000; Wereley et al., 2006; Park et al., 

2009). MRF ferromagnetic particles are free to move in their fluid medium, but once a magnetic 

field is applied, MRFs have the ability to change rheological properties, such as yield stress and 

viscosity. In other words, MRFs have the ability to change from a fluid state in Figure 1.3 (a) to a 

semi-solid or plastic state instantly upon the application of a magnetic field. In fact, the magnetic 

particles acquire a polarization and attract one another, forming a chain-like structure in the 

direction of the applied magnetic field as illustrated in Figure 1.3 (b). In this semi-solid state, the 

fluid exhibits a behavior that is characterized by the field-dependent yield stress (viscoplastic 

behavior). Commercial MR fluids usually have a particle composition of 30 to 40 volume 

percent (vol%) in the carrier fluid. Increasing the size of MRF particles causes an increase in  the 

shear strength of the fluid (Bell et al., 2008);  however,  spherical  particles larger  than  about  
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10  µm  tend  to  settle  too quickly  even  with  the  addition  of  special additives.  Particles  in  

the  nanometer  range  settle  more slowly  (if  the particles are not indefinitely suspended by 

Brownian motion), but contribute to the yield strength reduction of MRFs (Rosenfeld et al., 

2002; Poddar et al., 2004; Chaudhuri et al., 2005; Ngatu and Wereley, 2007). Sedimentation still 

occurs within particles with diameters within the “ideal” size range of 1-10 µm fluids due to the 

inherent density difference between the particles and the carrier fluid. Once settled, the spherical 

particles tend to form a hard cake caused by remnant magnetization and are not easily re-

dispersed (Phulé and Ginder, 1998).  

The field-dependent yield stress, MRFs fast response time (in milliseconds), the avertable 

moving parts, and the low voltage and power required make MRFs an attractive technology for 

many applications such as semi-active real-time control in civil, aerospace and automotive 

applications.  

1.3 MR Fluid Devices and Applications: Literature Review 

MRF devices have been very successful due to fluid technology advancements. The fact 

that MRFs can exceed yield stresses of 80 kPa is attractive and impressive for controllability and 

dynamic range. MRFs stability and durability have improved over the years through a number of 

interesting studies considering MRFs properties and behavior in order to better understand the 

behavior of the device in which the fluids operate for various applications. An MR device 

intended for one application often finds use in a different application in which the operating 

conditions of the fluid differ from the original application. For instance, the MR damper called 

MotionMaster™ damper by Lord Corporation was originally considered for use in trucks and 

buses suspensions, but it is also considered for use in prosthetic limbs. As different as these 

applications are, so are the MRF operating conditions.  
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An MR damper conventional valve configuration is shown in Figure 1.4. MR dampers 

can be used for vibration isolation. A particular helicopter seat and occupant system can be 

represented using a SDOF system in Figure 1.5 (a) and the system’s response is shown on the 

transmissibility plot in Figure 1.6 (a). At resonance (where the frequency ratio equals to 1) the 

system vibrates considerably. Consequently, damping needs to be added to reduce the peak as 

shown in Figure 1.6 (b). In the isolation region (region of frequency ratio located after √2	) the 

damping needs to be low, as illustrated in Figure 1.6 (c), to keep transmissibility low because it 

increases with damping. In the amplification zone (region of frequency ratio located before √2	), 

damping needs to be increased to keep transmissibility close to 1.The desired performance is 

illustrated with the blue curve in Figure 1.6 (d). Using an MR damper instead of conventional 

damper can satisfy this performance, and the damper can be turned on or off using commonly 

used controllers, such as skyhook control (Hiemenz et al., 2008). 

MR dampers can also be used for energy absorption. The energy absorber MR dampers 

provide vibration and shock mitigation potential to consider different operating conditions 

(payloads, vibration, shock pulses, and environmental factors). An important performance 

parameter is the dynamic range, which is the ratio of the maximum ON-state force (magnetic 

field activated) to the OFF-state force (magnetic field turned off). The passive force (OFF-state 

force) is assumed to increase proportionally to the velocity squared at higher damper piston 

velocities during impact events; hence, the damper exhibits nonlinear damping effects. The total 

MR damper force is expressed in Equation 1.2, and the sum of those two forces gives the 

constant stroking load (Figure 1.7). The energy is pulled during stroke. 

퐹 	= 	 퐹 	+ 	퐹 																																																								[1.2] 

퐹 	= 	 퐹 푠푔푛 푉 	with	퐹 = 	
2푛휏 퐿

푑 퐴 																																							[1.3] 
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Equation 1.3 of the force versus velocity relationship is illustrated in Figure 1.8 with the 

Bingham Plastic model typically used to analyze the nonlinear behavior of MR dampers. 

1.4 Modes of Operation of MR Dampers 

Depending on the fluid flow and on the rheological stress, there are three different modes 

of MRF operation: the flow mode (or valve or Poiseulle flow mode), the direct shear mode, and 

the squeeze mode.  

In the flow mode (Figure 1.8), the MRF is made to flow through a passage, across which 

the field can be applied. In this case, the electrodes (plates) are stationary. This is also the 

configuration typically utilized to construct MR valves in dampers and in shock absorbers. The 

pressure drop created in this mode, for instance in a damper, is the sum of the viscous (pure 

rheological) component and the magnetic field dependent (MR) component. 

In the shear mode (Figure 1.9), the MRF is enclosed between two electrodes (or magnetic 

poles). One of the electrodes or poles is kept fixed, while the other undergoes a displacement and 

is connected to the system that requires damping. The relative displacement between the two 

electrodes, or magnetic poles, results in shearing of the MRF while maintaining a constant gap 

between the electrodes. The strength of the applied field stays constant with the motion of the 

electrode. The total force in the shear mode can be separated into a viscous (pure rheological) 

component and a magnetic field dependent (MR) component. The shear mode is also used in MR 

dampers, and other applications of the shear mode appear in MR brakes and clutches. 

The third mode of operation is called the squeeze mode (Figure 1.10), and it has not been 

studied as thoroughly as the flow mode and the shear mode. The squeeze mode working 

principle is that the MR fluid is enclosed between two electrodes or magnetic poles that undergo 

relative motion along the direction of the field.  The field strength varies with the displacement 



www.manaraa.com

8 
 

of the electrodes. Some small-amplitude vibration dampers use this mode. For small motions, 

this mode seems to offer the possibility of very large forces which can be controlled by the MRF 

effect (Carlson, J.D., 1999). 

1.5 Literature Review of MR Damper Quasi-Static and Dynamic Models 

A great deal of efforts has been dedicated towards MR dampers theoretical models. 

Quasi-static models are Bingham Plastic or Hershel-Bulkley based models that do not 

incorporate hysteresis phenomenon in the MR damper force velocity behavior. Phillips, R.W. 

(1969) developed a nondimensional analysis based on the Bingham Plastic model to determine 

ERF/MRF pressure drop through a rectangular duct. Gavin et al. (1996) used an axisymmetric 

model to improve the description of ER/MR dampers quasi-static behavior as well as the 

previous analysis conducted by Phillips. Wereley et al. developed quasi-static nondimensional 

models using different variables, such as the damping coefficient and the Bingham number 

(Kamath and Wereley, 1997; Wereley and Pang, 1998; Hu and Wereley, 2003).  

Hershel-Bulkley based models (Lee and Wereley, 1999; Wereley, 2008; Wang and 

Gordaninejad, 2001) to incorporate shear thinning/thickening effects and to predict MR fluid 

behavior through a rectangular duct and circular pipes were developed. The models described are 

applicable to the design and analysis of the majority of controllable fluid devices. Particularly, 

the Bingham plastic based quasi‐static model is practical due to its simplicity. 

In order to practically describe damper hysteresis effects due to the force-velocity 

relationship, dynamic models have been investigated. For instance, a phenomenological model, 

which is numerically tractable and is capable of exhibiting a wide variety of hysteretic behaviors, 

was developed for MR dampers by Spencer et al. (1997) and Yang (2001). The 

phenomenological model was based on the Bouc-Wen hysteresis model. In addition, an Eyring-
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plastic model was developed by Bitman et al. (2005). The Eyring-plastic model was constructed 

by combining simple nonlinear functions, and the model had a simple design and formulation, 

even though it was in the form of a nonlinear function. The model can capture practical 

electrorheological (ER) damper responses, particularly in both the pre-yield and the post-yield 

states.  

The analysis of the MR landing gear damper with a spring-assisted passive valve 

developed in this current dissertation was based on a nonlinear quasi-static Bingham Plastic-

based model, and it was sufficient even in the case of higher speed impacts. 

1.6 Literature Review of Adaptive Landing Gear Dampers 

A primary goal of an adaptive landing gear system is to adapt the load stroke profile in 

response to payload and sink rate variations of a helicopter, while considering several challenges 

that have been encountered in prior work, such as controlling of the load stroke profile for short 

duration event (50-200 ms), keeping adaptive landing system compact and lightweight, and 

adjusting the load with control algorithms based on real-time measurements of sink rate and 

crash harshness (Choi et al., 2012). In order to meet these challenges as well as satisfy this 

study’s goal, a spring-based passive (or relief) valve MR landing gear system that has a constant 

cracking pressure, was proposed in this study. The motivation behind this current work stems 

from different aspects of adaptive MR landing gear systems. MR application to adaptive landing 

gear systems has been investigated by several research groups. For instance, the ability and 

effectiveness of an ERF/MRF-based landing gear system for dynamic load and vibration 

attenuation under different sink rates and payloads were analytically demonstrated by Choi and 

Wereley (2003). A telescopic type ER/MR damper shock strut was built, and its vibration control 

performance was investigated by using a two degree-of-freedom (2 DOF) landing gear system 
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model. The MR landing gear system achieved better performance results than passive landing 

gear systems. Batterbee et al. (2007) designed and constructed an oleo-pneumatic MR landing 

gear system by retrofitting a lightweight trainer aircraft commercial passive landing gear damper. 

It is important to note that all these studies mentioned about adaptive MR landing gear systems 

were designed and tested with scaled-down stroking loads intended for laboratory testing. Also, 

studies to suppress the fuselage vibration for improving the ride quality and safety of aircraft 

have been explored. Lin et al. developed a control algorithm using fuzzy proportional-integral-

derivative (PID) hybrid control for adaptive capability to nonlinear system variations (Lin et al., 

2009). The fuzzy PID hybrid control algorithm could effectively reduce the fuselage acceleration 

when compared to passive control and PID control. Mikulowski and LeLetty (2008) proposed a 

closed loop feedback control algorithm to recognize the impact energy based on the initial 

velocity and mass of the falling structure (velocity sensor), determine the optimal acceleration 

value for the adaptive impact absorber, and execute the control signal in the closed loop during 

the process (acceleration sensor feedback). Their closed loop feedback control algorithm was 

successfully implemented to maintain the optimal acceleration level with reference to the 

identified impact energy and the stroke of the adaptive absorber. Choi et al. (2012) proposed a 

flow-mode type MR landing gear damper for a lightweight helicopter skid landing gear system, 

which was designed, at full-scale and maintained a desired stroking load of 4000 lbf over a 

desired sink rate range of 6-12 ft/s. The performance of the MR landing gear damper was 

experimentally validated over the desired sink rate range under the iron-bird drop testing stand 

which is equipped with four MR landing gear dampers and uses a skid landing gear.  
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1.7 Outline and Description of Thesis 

In the subsequent chapter, which is Chapter 2, the focus is on the feasibility of 

synthesizing MRFs utilizing three different hydraulic oils employed as carrier fluids, which are 

licensed for use in landing gear systems. The key objective in this chapter is to assess the 

effectiveness and feasibility of using these newly synthesized MRFs in landing gear stroking 

elements such as shock struts or oleos. In order to determine the suitability of these newly 

synthesized MRFs for this application, a series of measurements is conducted and the 

performance of MRFs is characterized. First, rheological properties (yield stress and viscosity) 

are measured using a parallel disk rheometer as a function of magnetic field. Then, sedimentation 

rate is measured using an inductance-based sensor to measure particle settling rates and 

investigate the fluid stability after being quiescent for a long period of time. Finally, the dynamic 

behavior is measured using a small-scale MR damper, and dynamic impact loads are measured 

as a function of varying magnetic field strengths utilizing a drop tower facility. Chapter 2 

reviews common viscoplastic models, often used to describe the field dependent yield stress of 

MRFs. The performance of MRFs synthesized in Chapter 2 is compared to commercially 

available MRFs with similar solid loadings or volume percent (vol %) of iron (Fe) powder.  

Chapter 3 consists of investigating MRFs that employ passive particles. Carbonyl iron 

(CI) powder has been the primary ferromagnetic dispersant used to prepare MRFs because those 

powders enable high yield stress. However, particles in such MRFs do settle, and in the absence 

of remixing, the particles descend to the bottom of the container forming a hard cake that is hard 

to remix. An MRF is desired that essentially does not settle, but instead provides the full MR 

effect the first time it is used even in the absence of remixing. Methods have been proposed to 

reduce settling particularly for shear mode magneto-rheometers (Klingenberg and Ulicny, 2011; 
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Ulicny et al., 2010). However, such a study is lacking in the context of MR dampers or flow 

mode devices. Therefore, chapter 3 considers two MRF samples having 40 volume percent 

(vol%) of particles that are synthesized in a carrier fluid: MRF-40 and MRF-37. MRF-40 has 40 

vol% of CI particles, and MRF-37 contains 35.7 vol% of CI particles and 4.3 vol% of passive 

particles (glass beads). A comparative study of MRF characteristics is conducted to determine 

the impact of the nonmagnetic glass beads on yield stress, as well as viscosity, and settling rate. 

Both MRFs are characterized through magnetorheology as a function of magnetic field, 

sedimentation rate in a fluid column measured using an inductance-based sensor, and cycling of 

a small-scale damper undergoing sinusoidal excitations for characterization and endurance tests. 

Optical micrographs of the passive particles (glass beads) are taken before and after damper 

cycling to assess durability. The main goal of chapter 3 is to determine the impact of replacing a 

small volume percent (vol%) of CI magnetic particles with the same vol% of passive particles on 

MRF (yield stress and sedimentation rate) and MR damper (yield force and post-yield damping) 

performance. 

Chapter 4 focuses on an MR device modeling, design, and construction. In this chapter, a 

particular MR device is proposed to undertake the main goal of an adaptive landing gear system, 

which is to adapt the load stroke profile in response to payload and sink rate variations of the 

lightweight helicopter. The effort in this chapter is to satisfy a lightweight helicopter specific 

landing challenge by maintaining a constant stroking load of 4000 lbf over an extended 

equivalent sink rate range (6-26 ft/s) while considering other important challenges encountered 

in previous studies on adaptive landing gear dampers. The MR landing gear damper proposed in 

this chapter for this study is an MR landing gear damper with a spring-based passive (relief) 

valve. This chapter briefly discusses the nonlinear model used to design the landing gear device 
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considering the field dependent Bingham-plastic behavior of MRFs and nonlinear viscous loss 

factors that are dependent on velocity squared. In addition to the modeling of the MR valve with 

a spring-assisted passive valve, Chapter 4 also focuses on the design and construction of the MR 

and passive valves. The MR landing gear ON-state force performance is further examined via 

simulations using the commercial software ANSYS. For the ON-state case, an electromagnetic 

analysis is conducted to predict the magnetic field strength in the MR gap and estimate the MR 

yield force. Two different springs are designed and used (a conventional coil spring and a spiral 

wave spring) for the analysis. Two spring-assisted passive relief valves are constructed, and an 

experimental study using a material testing systems (MTS) machine is conducted to evaluate the 

damper force behavior of the spiral wave and coil spring-based MR landing gear dampers to 

verify that the passive valve operates properly to crack the pressure and maintain a stroking force 

of 4000 lbf over the desired sink rate range. 

In chapter 5, the intent is to expand the high end of the sink rate range, so that the peak 

stroking load can be held constant for sink rates ranging from 6-26 ft/s hence extending the high 

end of the speed range from 12 ft/s (from prior work) to 26 ft/s. This can be achieved through the 

use of an adaptive landing gear system. The main purpose of an adaptive landing gear system is 

to adapt the load stroke profile in response to payload and sink rate variations of a helicopter. To 

experimentally investigate the behavior of the MR landing gear damper fabricated, single 

damper drop tests conducted at the University of Maryland, College Park to measure the stroking 

load of the MR landing gear damper coupled with the passive valve over equivalent sink rates up 

to about 18 ft/s are considered. The total drop mass is 430 lbs. Chapter 5 focuses on a control 

algorithm used in order to maintain the peak stroking load of the MR landing gear damper 

constant over the desired sink rate range of 6-26 ft/s. The bang-bang current control algorithm is 
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formulated in this chapter using a force feedback signal. This control algorithm is experimentally 

evaluated using the single damper drop test setup. To experimentally measure the stroking load 

of the MR landing gear damper with the spring-assisted passive valve over higher desired 

equivalent sink rates up to 26 ft/s, single damper drop tests (with a total drop mass of 1283 lbs) 

conducted at Boeing Structures Test Laboratory in Mesa, Arizona are considered. Finally, a 

ballasted frame called an iron-bird, which emulates the lightweight helicopter with a complete 

skid landing gear system and incorporates four MR landing gear dampers that are each coupled 

with a spring-based passive valve, is drop tested at Boeing as well (with a total drop mass of 

2627 lbs). The bang-bang current control algorithm is also used for the iron-bird drop test data to 

regulate the damper force of the MR landing gear dampers over the desired sink rate range of 6-

26 ft/s. 

Chapter 6 investigates the validation of the MR landing gear damper with a spring-

assisted relief valve models. In order to experimentally validate the adaptive MR landing gear 

damper models, drop tests data are utilized. In fact, MR landing gear damper performance is 

characterized using drop tests, and the data is used to validate model predictions data from these 

drop tests at low and high speed impacts. This chapter focuses on better understanding the 

behavior of the MR landing gear damper coupled with a spiral wave spring-assisted passive 

valve and operating over sink rates ranging from 6 -26 ft/s. Two models are examined in this 

chapter. Model #1 is a nonlinear BP-type damper model including the Darcy friction and 

pressure drop due to viscous effects and MR valve minor losses, which are proportional to the 

velocity squared, and the pressure drop due to the spring-assisted relief valve seal’s opening. The 

second model (model #2) is a modified version of the first as it considers, in addition to the 

pressure drop due to the relief valve seal’s opening, the pressure drop across the center orifice of 



www.manaraa.com

15 
 

the relief valve to better account for the damper force behavior at higher speeds. This model 

includes minor loss factors, Darcy friction and viscous forces across the MR valve and the center 

orifice of the relief valve. In addition, a gas pressure inside the MR damper piston is considered; 

hence, the total force of the MR landing gear damper with a spiral wave spring-assisted relief 

valve includes the gas force. The main objective of chapter 6 is to experimentally validate the 

models using single damper drop test data obtained from the drop tower facility at Boeing 

Structures Test Laboratory in Mesa, Arizona for nominal drop speeds of up to 26 ft/s (7.9 m/s).  

Finally, chapter 7 provides a summary of the work and highlights the significant results. 

Research contributions as well as recommendations for future work are also presented in this 

chapter.  

References 

Batterbee, D.C., Sims, N.D., Stanway, R., and Wolejsza, Z., (2007a) Magnetorheological landing 

gear: 1. A design methodology. Smart Materials and Structures, 16: 2429-2440. DOI: 

10.1088/0964-1726/16/6/046. 

Batterbee, D.C., Sims, N.D., Stanway, R., and Rennison, M., (2007b) Magnetorheological 

landing gear: 2. Validation using experimental data. Smart Materials and Structures, 16: 

2441-2452. DOI: 10.1088/0964-1726/16/6/047. 

Bell, R.C., Karli, J.O., Vavreck, A.N., Zimmerman, D.T., Ngatu, G., and Wereley, N.M., (2008) 

Magnetorheology of submicron diameter iron microwires dispersed in silicone oil. Smart 

Materials and Structures, 17(015028): 1-6. DOI: 10.1088/0964-1726/17/01/015028. 

Bitman L., Choi, Y.-T., Choi, S.B., and Wereley, N.M., (2005) Electrorheological damper 

analysis using an Eyring-plastic model. Smart Materials and Structures, 14(1): 237-246. 

DOI: 10.1088/0964-1726/17/14/1/024. 



www.manaraa.com

16 
 

Carlson, J.D, Sprecher, A.F., and Conrad, H., (1990) Electrorheological fluids. Proceedings of 

the Second International Conference on ER Fluids, Technomic, Lancaster, Pa. 

Carlson, J.D., Catanzarite, D.M., and St. Clair, K.A., (1995) Commercial magneto-rheological 

fluid device. Lord Corporation, Cary, NC 27511 USA. Proceedings of the 5th 

International Conference on ER Fluids, MR Fluids and Associated Technology, U. 

Sheffield, UK, 20-28.  

Carlson, J.D., (1999) Magnetorheological Fluid Actuators. Adaptronics and Smart Structures, 

Editor H. Janocha Springer Berlin, 180-195, ISBN 3-540-61484-2. 

Carlson, J.D., and Jolly, M.R., (2000) MR fluid, foam and elastomer devices. Mechatronics, 10 

(4-5): 555-569. DOI: 10.1016/S0957-4158(99)00064-1. 

Carlson, J.D., (2001) What makes a good MR fluid. Proceedings of the 8th International 

Conference on Electrorheological (ER) and Magnetorheological (MR) Suspensions. 

Chaudhuri, A., Wereley, N.M., Kotha, S., Radhakrishnan, R., and Sudarshan, T., (2005) 

Viscometric characterization of cobalt nanoparticle-based magnetorheological fluids 

using genetic algorithms. Journal of Magnetism and Magnetic Materials, 293: 206–214. 

DOI: 10.1016/j.jmmm.2005.01.061. 

Choi, Y.-T., and Wereley, N.M., (2003) Vibration control of a landing gear system featuring 

ER/MR fluids. AIAA Journal, 40(3): 432–439. DOI: 10.2514/2.3138. 

Choi, Y.-T., Robinson, R., Hu, W., Wereley, N.M., Birchette, T.S., and Bolukbasi, A.O., (2012) 

Analysis and control of a magnetorheological landing gear system for a helicopter.  

Proceedings of the American Helicopter Society 68th Annual Forum & Technology 

Display, Fort Worth, TX, USA. 



www.manaraa.com

17 
 

Gavin, H.P., Hanson, R.D., and Filisko, F.E., (1996) Electrorheological dampers, part I: analysis 

and design. Journal of Applied Mechanics, 63: 678-82. DOI: 10.1115/1.2823348. 

Gonzales, F.D., (2005) Characterizing the behavior of magnetorheological fluids at high 

velocities and high shear rates. Ph.D Thesis, Mechanical Engineering, Virginia 

Polytechnic Institute and State University, Virginia. 

Hiemenz, G., Hu, W., and Wereley, N.M., (2008) Semi-active magnetorheological helicopter 

crew seat suspension for vibration isolation. Journal of Aircraft, 45(3): 945-953. DOI: 

10.2514/1.32736. 

Hu, W., and Wereley, N.M., (2003) Nondimensional damping analysis of flow-mode 

magnetorheological and electrorheological damper. Proceedings of IMECE’03 ASME, 

International Mechanical Engineering Congress & Exposition, Washington, D.C., USA. 

Jolly, M.R., Bender, J.W., and Carlson, J.D., (1998) Properties and applications of commercial 

magnetorheological fluids. Proceedings of the 5th SPIE Annual International Symposium 

on Smart Structures and Materials, San Diego, CA. 

Kamath, G.M., and Wereley, N.M., (1997) A nonlinear viscoelastic-plastic model for 

electrorheological fluids, Smart Materials and Structures, 6: 351-359. DOI: 

10.1088/0964-1726/6/3/012. 

Klingenberg, D.J., and Ulicny, J.C., (2011) Enhancing magnetorheology. International Journal 

of Modern Physics B, 25(7): 911-917. DOI: 10.1142/S021797921105847X. 

Lee, D.Y., and Wereley, N.M., (1999) Quasi-steady Herschel-Bulkley analysis of electro- and 

magnetorheological flow mode dampers. Journal of Intelligent Material Systems and 

Structures, 10(10): 761-769. DOI: 10.1106/E3LT-LYN6-KMT2-VJJD. 



www.manaraa.com

18 
 

Lin, L.H., Yong, C., Qi, H., and Jian, L., (2009) Fuzzy PID control for landing gear based on 

magnetorheological (MR) damper. International Conference on Apperceiving Computing 

and Intelligence Analysis (ICACIA), 22-25. DOI: 10.1109/ICACIA.2009.5361162. 

Lord Corporation, www.lord.com. 

Lord Corporation (2014) Dr. Dave's Do-It-Yourself MR Fluid, Designing with MR Fluid, 

Magnetic Circuit Design, FAQs, www.lord.com. 

Mikulowski, G.M., and LeLetty, R., (2008) Advanced landing gears for improved impact 

absorption. Proceedings of the 11th International Conference on New Actuators, 363-

366, Bremen, Germany. 

Mikułowski, G.M., Wiszowaty, R., and Holnicki-Szulc, J., (2013) Characterization of a 

piezoelectric valve for an adaptive pneumatic shock absorber. Smart Materials and 

Structures, 22(125011): 1-12. DOI: 10.1088/0964-1726/22/12/125011. 

Ngatu, G.T., and Wereley, N.M., (2007) Viscometric and sedimentation characterization of 

bidisperse magnetorheological fluids. IEEE Transactions on Magnetics, 43(6): 2474–

2476. DOI: 10.1109/TMAG.2007.893867. 

Park, B.J., Song, K.H., and Choi, H.J., (2009) Magnetic carbonyl iron nanoparticle based 

magnetorheological suspension and its characteristics. Materials Letters, 63(15): 1350-

1352. DOI: 10.1016/j.matlet.2009.03.013. 

Phillips, R.W., (1969) Engineering Applications of Fluids with a Variable Yields Stress, Ph.D 

Thesis, Mechanical Engineering, University of California, Berkeley. 

Phulé, P., and Ginder, J., (1998) The materials science of field-responsive fluids. MRS Bulletin, 

23(8): 19–21. DOI: 10.1557/S0883769400030761. 



www.manaraa.com

19 
 

Poddar, P., Wilson, J.L., Srikanth, H., Yoo, J.H., Wereley, N.M., Kotha, S., Barghouty, L. and 

Radhakrishnan, R., (2004) Nanocomposite magnetorheological fluids with uniformly 

dispersed Fe nanoparticles. Journal of Nanoscience and Nanotechnology, 4(1-2): 192–

196. DOI: 10.1166/ jnn.2004.020. 

Rosenfeld, N., Wereley, N.M., Radakrishnan, R., and Sudarshan, T., (2002) Behavior of 

magnetorheological fluids utilizing nanopowder iron. International Journal of Modern 

Physics B, 16(17-18): 2392–2398. DOI: 10.1142/S0217979202012414. 

Spencer Jr., B.F., Dyke, S.J., Sain, M.K., and Carlson, J.D. (1997) Phenomenological model for 

a magnetorheological damper. Journal of Engineering Mechanics, ASCE, 123: 230-52. 

Ulicny, J.C., Snavely, K.S., Golden, M.A., Klingenberg, D.J., (2010) Enhancing 

magnetorheology with nonmagnetizable particles. Applied Physics Letters, 96: 231903-1-

3. DOI: 10.1063/1.3431608. 

Wang, X., and Gordaninejad, F., (2001) Dynamic modeling of semi-active ER/MR fluid 

dampers, damping and isolation. Proceedings of SPIE Conference on Smart Materials 

and  Structures, 4331; 82-91. 

Wereley, N.M., and Pang, L., (1998) Nondimensional analysis of semi-active electro- and 

magneto-rheological dampers using parallel plate models. Smart Materials and 

Structures, 7: 732-743. DOI: 10.1088/0964-1726/7/5/015. 

Wereley, N.M., Chaudhuri, A., Yoo, J.H., John, S., Kotha, S., Suggs, A., Radhakrishnan, R., 

Love, B.J., and Sudarshan, T.S., (2006) Bidisperse magnetorheological fluids using Fe 

particles at nanometer and micron scale. Journal of Intelligent Material Systems and 

Structures, 17(5): 393-401. DOI: 10.1177/1045389X06056953. 



www.manaraa.com

20 
 

Wereley, N.M., (2008) Nondimensional Herschel-Bulkley analysis of magnetorheological and 

electrorheological dampers. Journal of Intelligent Material Systems and Structures, 

19(3): 257-268. 

Yang, G.Q., (2001) Large-scale magnetorheological fluid damper for vibration mitigation:  

modeling, testing and control.  Ph.D dissertation, University of Notre Dame. 

 

   

 

 

 

 

 

 

 



www.manaraa.com

21 
 

 

 

 

 

 
Figure 1.2. Passive hydraulic damper performances for the MD-500 helicopter fixed 
landing gear dampers. Each damper is tuned for only one condition. 

 

 
Figure 1.1. Design targets assigned by Boeing to maintain a constant stroking load of 4000 
lbf over an equivalent sink rate range of 6-26 ft/s 
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Figure 1.4. Typical conventional MR damper valve configuration 
MR: Magnetorheological  

 
(a) 

 
(b) 

 
Figure 1.3. Activation of MRF: (a) no magnetic field applied; (b) magnetic field applied 
and ferromagnetic particle chains have formed (© 2005 Lord Corporation. All rights 
reserved) 

MRF: Magnetorheological fluid 
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Figure 1.5. A particular helicopter seat and occupant system represented using a single-
degree-of-freedom system (SDOF system) 
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Figure 1.6. A particular helicopter seat and occupant system’s response shown on a 
transmissibility plot 
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Figure 1.8. Force versus velocity relationship represented by the Bingham Plastic model 
 

 
 
Figure 1.7. MR devices used for energy absorption. The constant stroking load is the 
sum of 퐹  and 퐹 . 
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Figure 1.11. MR damper mode of operation: squeeze mode  

 

 
Figure 1.10. MR damper mode of operation: shear mode  

 
Figure 1.9. MR damper mode of operation: flow mode  
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Table 1.1. MRF and ERF key features comparison 

Key Features MRF ERF 

Maximum yield stress 50-100 kPa 2-5 kPa 

Power supply 2-24 Volts @ 1-2 A 2-5 kilovolts @ 1-10 mA 

Response time Few milliseconds Few milliseconds 

Operational Field ~250 kA/m ~4kV/mm 

Energy density 0.1 J/cm3 0.001 J/cm3 

Stability Good for most impurities Poor for most impurities 

Operational temperature -40⁰C up to +150⁰C -25⁰C up to +125⁰C 
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CHAPTER 2: Magnetorheological Fluids Synthesized for 

Helicopter Landing Gear Applications  

2.1 Introduction and Overview 

Magnetorheological fluids (MRFs) are used in an increasing range of applications, such 

as primary vehicle suspensions and semi-active vibration absorbing systems (Choi et al., 2005a; 

Snyder et al., 2001). However, the use of MRFs targeting such applications as landing gear 

systems has not been widely investigated (Batterbee et al., 2007a; Choi et al., 2003 and 2012). 

During landing, an aircraft is subjected to a short-duration impulsive impact, which is a 

contributing factor to structural fatigue damage, crew and passenger discomfort, and dynamic 

stress. One possibility to reduce these impact loads is to incorporate MRFs into the shock struts 

of landing gear systems. By doing so, a landing gear can exploit the field adjustable yield stress 

to control the stroking load of a landing gear oleo to minimize impact loads transmitted to the 

aircraft fuselage. 

Magnetorheology depends on several factors including particle shape (Bell et al., 2007), 

and coatings (Fang et al., 2008) or passive particles (Powell et al., 2012). However, in this 

chapter, the focus is on the feasibility of synthesizing MRFs employing three different carrier 

fluids, which are hydraulic oils licensed for use in landing gear (MIL-H-5606, MIL-PRF-83282, 

and MIL-PRF-87257). The performance of MRFs was characterized through a series of 

measurements in order to assess the suitability of  these synthesized MRFs: (1) rheological 

properties (yield stress and viscosity) were measured using a parallel disk rheometer as a 

function of magnetic field, (2) sedimentation rate was measured using an inductance-based 

sensor to measure particle settling rates, (3) dynamic behavior was measured using a small-scale 
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MR damper, and (4) dynamic impact loads were measured as a function of varying magnetic 

field strengths utilizing a drop tower facility. The MRFs synthesized here are also compared to 

commercially available MRFs with similar solids loading or weight percent (wt%) of iron (Fe) 

powder.  

The key goal in this chapter is to assess the effectiveness and feasibility of using these 

newly synthesized MRFs in landing gear stroking elements such as shock struts or oleos. 

2.2 Synthesis of MRF Composites 

Three certified landing gear hydraulic oils were utilized as carrier fluids to prepare 

MRFs: a mineral oil (MIL-H-5606) and two synthetic hydrocarbon oils (MIL-PRF-83282 and 

MIL-PRF-87257). These particular oils were selected to preserve important characteristics 

needed for landing gear systems, such as wide operational temperature ranges (e.g. 265 ⁰F to 275 

⁰F), excellent anti-wear agents, and fire resistance properties (Aviation Maintenance and 

Training Manual, 2003).  

Each hydraulic fluid was then used to prepare two categories of MRF composites, 

depending on the average diameter of spherical Fe particles present. The first sample set 

contained Fe particles of larger diameter (6–10 µm denoted by I), and the second set contained 

Fe particles of smaller diameter (1–3 µm denoted by II). Also, lecithin powder (2 wt%) was 

added as a surfactant to reduce agglomeration and to minimize particle settling rate. In order to 

prepare stable MRFs, a specific amount of hydraulic oil was mixed with lecithin powder using a 

high speed shear mixer (IKA-Ultra-Turrax® T 25 basic) operating at 11,000 rpm. After 

consistently mixing for 30 min, Fe particles were added in specific quantity to each fluid sample 

and remixed for an additional hour. Accordingly, samples varying from 60 to 80 wt% (15 to 32 

vol%) in Fe particle concentrations were synthesized, and each sample notation includes three 



www.manaraa.com

30 
 

important parts: first is the hydraulic oil number used (e.g. 83282, 87257, or 5606), second are 

Fe particle sizes (e.g. I for 6–10 µm or II for 1–3 µm), and third is the Fe particle concentration 

(e.g. ‘‘d’’ for 75 wt% Fe and ‘‘e’’ for 80 wt% Fe). The synthesis chart is presented in Figure 2.1. 

2.3 Characterization of MRF Composites 

2.3.1 Magnetorheology 

2.3.1.1 Setup and Instrumentation 

MRF characterization was performed on all the MRF samples using a Paar Physica MCR 

300 parallel disk rheometer (Figure 2.2). This instrument was used to measure the flow curves 

(i.e. shear stress vs. shear rate) as a function of applied field. The prepared samples (0.3 ml) were 

loaded onto the rheometer, which had a standard 1 mm gap separating the rotating disk from the 

platen. The current was increased from 0.2 to 5 A to measure flow curves as a function of the 

applied field and to determine magnetic saturation of each sample.  

2.3.1.2 Results and Discussion 

Rheological tests were performed on all of the prepared MRFs at room temperature. The 

fluid was sheared by the rotating top disk of the rheometer as the bottom disk stayed stationary. 

Figure 2.3 shows selected flow curves with the Bingham Plastic (BP) model of mr83282-Ie with 

synthetic oil (MIL-PRF-83282). A synthetic oil-based MRF containing larger (6–10 µm) Fe 

particles with 75 wt% (or 26 vol%) Fe concentration (referred as mr83282-Id) rheology was 

compared to a commercial MRF from Lord Corporation (MRF126CD) of the same Fe 

concentration. The MRF sample (mr83282-Id) had an off-state (dynamic) viscosity lower than 

that of the commercial MRF, as illustrated in Figure 2.4. It is important to keep the off-state 

viscosity as low as possible in order to maintain high-frequency transmissibility in a base-excited 
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isolation mount as low as possible (Choi et al., 2005a). Also, both fluids had field-dependent 

yield stress curves that followed similar trends, as shown in Figure 2.5. 

2.3.1.3 Bingham Plastic Modeling of MRF Composites Flow Curves 

The flow curves were characterized using the Bingham plastic (BP) model (Wereley et 

al., 2006). In this model, when a shear stress is applied to the fluid, it behaves as a solid until a 

specific yield stress,  is reached. At stress levels higher than the yield stress, the fluid 

performs like a Newtonian liquid with a constant viscosity. Above the yield point, the stress in 

the fluid can be expressed as the following constitutive law: 

휏 = 휏 + 휇훾̇	for	훾̇ > 0																																																								[2.1]                                    

where  is the post-yield viscosity and  the shear rate. The post-yield viscosity is the slope of 

the high shear rate asymptote of the BP model, and the yield stress is the intercept of the high 

shear rate asymptote to the shear stress axis.  

2.3.2 Sedimentation Testing 

2.3.2.1 Setup and Instrumentation 

The effectiveness of the MRF composite to maintain the suspension was analyzed by 

quantifying the settling rates of Fe particles using a 1/4-in inductance-based sensing coil. In fact, 

after settling, the Fe particles may form a hard cake due to remnant particle magnetization, which 

is difficult to redisperse, rendering the MRF ineffective. Therefore, in order to prepare stable 

MRFs, adding a surfactant, such as lecithin, improves mixability by reducing this tendency to 

form a hard cake. The sedimentation setup is described in (Ngatu and Wereley, 2007; Powell et 

al., 2012). 

y
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 As settling progresses, the sensing coil tracks a distinct boundary, or “mudline,” between 

the clarified carrier fluid above and the MRF below, and it measures the inductance, L, which 

depends on the permeability of MRFs (also dependent on the volume fraction of dispersed 

particles) enclosed by the sensing coil, as illustrated in Equation 2.2:  

퐿 =
푁 퐴휇

푙 휇 																																																															[2.2] 

n is the number of turns, A is the cross-sectional area of the sensing coil wire,  is the vacuum 

magnetic permeability,  is the relative permeability of the enclosed MRF, and 

푙	푖푠	푡ℎ푒	푠푒푛푠푖푛푔	푐표푖푙	푙푒푛푔푡ℎ. As the mudline travels downwards through the sensing coil, the 

permeability of the fluid volume contained therein decreases. The slope of this curve yields the 

sedimentation rate (Ngatu and Wereley, 2007; Powell et al., 2012). The samples were tested 

twice: a sedimentation test was performed immediately after synthesizing the fluid and a second 

test after being stored quiescent for one month in order to assess remixability. 

2.3.2.2 Results and Discussion 

Particle sedimentation rates of the tested MRFs were measured several times to verify 

redispersion consistency. For example, the MRF containing synthetic oil and larger particles at 

80 wt% (i.e.: mr83282-Ie) inductance was measured while the fluid mudline descended through 

the sensor. After performing the first set of tests, the fluid was not remixed for one month until 

the second set of tests was conducted. Testing was repeated several times on the same sample, 

and Figure 2.6 shows that the results are similar. This demonstrates that the particles were easily 

remixed in the MRF after being left alone for at least one month. 
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2.3.3 Low Speed Dynamic Testing of MR Damper 

2.3.3.1 Setup and Instrumentation 

Performance of the MRFs was determined by the response of a modified Rheonetics SD-

1000-2 MR damper from Lord Corporation to sinusoidal loads. Only MRFs containing Fe 

particle concentration of 80 wt% or 32 vol% were tested for this experiment. The damper was 

subjected to sinusoidal loading on an 810 MTS servo-hydraulic testing machine. Figure 2.7 

shows the setup for the MR damper characterization and further discussion of this MR damper 

can be found in (Snyder et al., 2001; Powell et al., 2012).  

The MR damper was connected to a load cell through an extension bolt that was screwed 

into an upper bracket, which in turn was holding the MR damper in place. The lower mounting 

bracket was attached to the MR damper through a mounting rod that is slotted at the mounting 

hole of the shaft displacement, located at the center of the MR damper assembly. The other end 

of the lower mounting bracket was attached to the MTS actuator through another extension bolt. 

The displacement and MR damper force were measured by the linear variable differential 

transformer (LVDT) sensor and load cell of the MTS machine. 

2.3.3.2 Test Inputs 

The frequencies of excitations were chosen to be 2.5 Hz and 5.0 Hz. The damper 

excitation amplitudes ranged from 1.27 mm to 7.62 mm with a 2.54 mm increment. In order to 

apply a magnetic field inside the damper, electric current from a DC power supply (from 0 to 4 

A with 1 A increment) was used to power the magnetic circuit.  

2.3.3.3 Results and Discussion 

The hysteretic behavior of the linear stroke MR damper containing MRF was studied 

using high Fe particle concentration fluids of 80 wt% or 32 vol% (specifically, MRFs denoted 
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mr83282-Ie and mr5606-Ie). The Nonlinear BiViscous (NBV) model was used to characterize 

the yield force of the MR damper. The performances of both MRF samples, i.e., mr83282-Ie and 

mr5606-Ie, were compared to a commercial MRF from Lord Corporation (MRF132) of the same 

particle concentration. The yield force of all three fluids followed the same trend as a function of 

applied field, particularly at 5 Hz. Figure 2.8 illustrates these results, and all three fluid yield 

forces plotted versus current show that the maximum yield forces are within 5%. 

2.3.3.4 Nonlinear BiViscous Model of MR Damper  

Force versus displacement data were analyzed using the NBV model (Wereley et al., 

2004). The NBV model was employed to represent force versus velocity damper response, and 

provided a means to estimate yield force (퐹 ) and post-yield damping (퐶 ). The model is 

piecewise continuous in velocity and assumes that the MRF is plastic in both the pre-yield, 퐶 , 

and the post-yield, 퐶 , conditions with the pre-yield damping being much greater than the post-

yield damping as illustrated in Figure 2.9 (Wereley et al., 2004). The piecewise continuous 

equations describing the model are shown in Equations 2.3 and 2.4: 

푓(푡) =
퐶 푣 + 퐹 푣 ≥ 푣
퐶 푣 												−푣 ≥ 푣 ≤ 푣 															

퐶 푣 − 퐹 푣 ≤ −푣
                      [2.3]                                               

The pre-yield velocity is: 

푣 =
퐹

퐶 − 퐶 																																																											[2.4] 
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2.3.4 High Speed Impact Testing of MR Damper 

2.3.4.1 Setup and Instrumentation 

A free-flight drop test facility with a 59 kg drop carriage, as shown in Figure 2.10, was 

used to conduct impact tests on a MR energy absorber (MREA) filled with synthetic oil-based 

MRF containing 6-10 µm Fe particles at a concentration of 80 wt% (denoted mr83282-Ie).  

Recently, MREAs have been highlighted as a promising candidate for crashworthiness 

systems, and several impact tests have been conducted (Facey et al., 2005; Mao et al., 2007). 

Therefore, the performance of mr83282-Ie in a MREA subjected to drop testing is important to 

verify the adjustability of MREA response at impact velocities representative of sink rates that 

occur during a helicopter landing. 

The experiment instrumentation included a load cell located on a base plate as shown in 

Figure 2.11, which was safely bolted to the ground, an LVDT fastened to the damper to monitor 

the displacement of the damper piston as a function of time, and a power supply to provide 

electric current necessary to generate a magnetic field in the damper magnetic circuit. In 

addition, the raw signal from the sensor was filtered through a 2311 VISHAY signal 

conditioning amplifier, and the data was transferred to a computer using a SCC-68 National 

Instruments data acquisition interface (which changed analog data to digital). Finally, the data 

was exported to MATLAB compatible formats for analysis.  

Testing of the MRF composite enclosed in the damper was achieved by positioning the 

damper vertically on the base plate. Then, a block of aluminum honeycomb measuring 90x60x60 

mm was taped on a small plate, which was mounted on the top end of the damper. The purpose 

of using the aluminum honeycomb block was to prevent the ringing in the load cell due to metal-

to-metal contact and reduce the inertial spike associated with the impact acceleration of the 
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piston rod (Browne et al., 2004). Additional larger honeycomb blocks were placed on top of 

cement bricks and wood blocks (on each side of the damper) to stop the drop carriage platform 

after about 3.8 cm of stroke, which needed to be less than the LVDT stroke of 4.6 cm to prevent 

damaging it. 

2.3.4.2 Results and Discussion 

An MREA was filled with a synthetic hydraulic oil-based MRF with 6–10 µm and 80 

wt% Fe particles concentration (denoted mr83282-Ie) and subjected to drop tests. This particular 

fluid was selected due to its favorable performance based on the rheological and damper test 

results. Peak stroking loads measured for a range of impact velocities and applied magnetic field 

strengths are in Table 1. The peak force increased as magnetic field and impact velocities 

increased. In Table 1, for a given field strength, the peak stroking load increased as velocity 

increased as a result of the velocity squared viscous force component. As the current (or 

magnetic field) increased, the peak stroking load also increased, which resulted in the increase in 

yield stress or MREA force. Tunability of the stroking load was greater at lower impact velocity 

and reduced slightly as the velocity increased. The MRF (mr83282-Ie) enabled tunable behavior 

as the magnetic field varied. The peak stroking load, as well as the energy absorbed by the 

MREA, could be adjusted by increasing magnetic field for an impact velocity of 2.8 m/s as 

shown in Figure 2.12. 

2.4 Conclusions 

Magnetorheological fluids (MRFs) were synthesized using three different carrier 

hydraulic oils certified for landing gear use, and the feasibility of these MRFs for potential use in 

landing gear systems was assessed. A series of sample MRFs were synthesized for different solid 

loadings (vol% of iron, Fe, particles) using landing gear fluids as the carrier fluids: MIL-H-5606, 
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MIL-PRF-83282, and MIL-PRF-87257. A lecithin surfactant was used (2 wt%) to maintain the 

suspension and to prevent particle agglomeration. These fluids were also compared to 

commercially available fluids from Lord Corporation with comparable solid loadings. 

First, magnetorheological (MR) properties were tested as a function of applied field, and 

the experimental data were characterized using the Bingham Plastic (BP) model. Using flow 

curve data, the yield stress and viscosity of the MRF composites were identified. The MR 

landing gear fluid composite compared favorably with a commercial MRF (both containing 26 

vol% magnetic particles). 

Second, a particle sedimentation study was performed on the fluids using an inductance 

coil-based sedimentation rate monitoring system. Consequently, particle dispersion stability was 

effective, and redispersion showed similar results, even though fluids were left quiescent for over 

a month. 

Third, the performance of a linear stroke MR damper, filled with MRFs, was 

characterized using a Nonlinear BiViscous (NBV) model. The NBV model was used to 

successfully identify the yield force. MR damper behavior was compared to the damper behavior 

using a commercial MRF (of 32 vol% particle concentration). The yield forces of the MRFs 

containing the larger (6-10 µm) Fe particles (32 vol%) compared favorably with that of the 

commercial MRFs, and measured yield forces of the MR damper with either MRF were within 

5% of each other. 

Finally, synthetic oil-based MRF (of 32 vol% Fe particles) was utilized in an MR damper 

and subjected to high shear rate drop testing to experimentally verify the tuning nature of the MR 

device at different impact velocities and magnetic field strengths. Consequently, the peak 
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stroking force and the energy dissipated by the MR damper strongly depended on the changes in 

the magnetic field strengths.  

Based on this range of tests used to characterize MRFs synthesized, using certified 

landing gear fluids, it has been shown that it is feasible to utilize such hydraulic oils as the carrier 

fluids in suitable MRFs. Additional testing is warranted to ensure that the addition of particle 

solids and surfactants does not affect key properties of the hydraulic carrier fluids such that 

operating temperature range and resistance to flammability are preserved in landing gear 

applications. 
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Figure 2.2. Paar Physica MCR 300 parallel disk rheometer 

 

Figure 2.1. Fluid sample preparation and notation 

Test area 
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Figure 2.4. Off-state viscosity (Pa s) of mr83282-Id and MRF126CD (both 75 wt% and 
26 vol% particle concentration) 
MRF: magnetorheological fluid 

 

 
Figure 2.3. Sample flow curves or shear stress versus shear rate for oil-based mr83282-Ie 
(80 wt% Fe)  
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Figure 2.6. Settling rates of mr83282-Ie (containing 6-10 µm particles at 80 wt% 
concentration). Testing was performed one month apart. 

 
Figure 2.5. Yield stress (kPa) as a function of applied current (A) 
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Figure 2.8. Yield force (N) versus current (A) for synthetic oil-based (mr83282-Ie) and 
mineral oil-based (mr5606-Ie) MRFs and commercial MRF (Lord MRF132) at 5 Hz 

 

 
Figure 2.7. Cross section and setup of MR damper on 810 MTS servo-hydraulic testing 
machine 
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Figure 2.10. Drop test carriage at the University of Maryland College Park 

 
Figure 2.9. Force versus velocity with Nonlinear BiViscous (NBV) model of mr83282-Ie 
(containing 6-10 µm particles at 80 wt% concentration) 

Drop carriage 
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Figure 2.12. Stroking load time history for three different applied field strengths for an 
impact velocity of 2.8 m/s 

 
Figure 2.11. MREA drop testing setup at the University of Maryland 
MREA: magnetorheological energy absorber 
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Table 2.1. Peak stroking load (N) for applied current and impact velocity 

Velocity (m/s) Current (Amperes) 

0 0.5 2 

1.1 950 1360 3770 

2.8 2940 3960 6880 

4.1 7530 9080 10100 
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CHAPTER 3: Magnetorheological Fluids Employing Passive 

Particles  

3.1 Introduction and Overview 

Magnetorheological fluids (MRF) (Rabinow, 1951; Carlson and Jolly 2000), 

magnetorheological (MR) foams (Carlson and Jolly, 2000), and MR elastomers (Carlson and 

Jolly, 2000; Padalka et al., 2010; Eem et al., 2011; Shunta et al., 2012) are used in an increasing 

range of applications such as semi-active vibration and shock isolation systems. Carbonyl iron 

(CI) powder has been the primary ferromagnetic dispersant used to prepare MRFs because such 

powders enable high yield stress. Unfortunately, particles in such MRFs do settle, and in the 

absence of remixing, the particles descend to the bottom of the container. A MRF is desired that 

essentially does not settle, but instead provides the full MR effect the first time it is used even in 

the absence of remixing. Methods have been proposed to reduce settling, such as chemical 

modification of CI particles (Park et al., 2009; Jiang et al., 2009), or substitution of micro-scale 

magnetic particles for nano-scale particles (Wereley et al., 2006; Ngatu and Wereley, 2007; 

Patel, 2011). Although substitution of nonmagnetic particles for magnetic CI particles in MRFs 

has been investigated for shear mode magneto-rheometers (Klingenberg and Ulicny, 2011; 

Ulicny et al., 2010), such a study is lacking in the context of MR dampers or flow mode devices. 

Two MRF samples having 40 volume percent (vol%) of particles were synthesized: 

MRF-40 and MRF-37. MRF-40 had 40 vol% of CI particles, and MRF-37 contained 35.7 vol% 

of CI particles and 4.3 vol% of glass beads. A comparative study of MRF characteristics was 

conducted to determine the impact of the nonmagnetic glass beads on yield stress, as well as 

viscosity, and settling rate. Both MRFs were characterized as follows: 1) magnetorheology as a 
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function of magnetic field, 2) sedimentation rate in a fluid column measured using an 

inductance-based sensor, and 3) cycling of a small-scale damper undergoing sinusoidal 

excitations at frequencies of 1 Hz for characterization and 4 Hz for endurance tests. Optical 

micrographs of the glass beads were taken before and after damper cycling to assess durability. 

Our goal is to determine the impact of replacing a small volume percent (vol%) of CI 

magnetic particles with the same vol% of nonmagnetic glass beads on MRF (yield stress and 

sedimentation rate) and MR damper (yield force and post-yield damping) performance. 

3.2 Characterization of MRF 

3.2.1 Magnetorheology 

3.2.1.1 Setup and Instrumentation 

Magnetizable particles used in this study were carbonyl iron (CI) particles, nominally 2 

and 8 micron average diameter, in a 50-50 bidisperse mixture (BASF Corp.).  Non-magnetizable 

particles were 11 micron average diameter hollow non-porous fused borosilicate microspheres 

(Potters Sphericel 110P8, hollow spheres).  Carrier fluid was a hydrogenated poly-alpha-olefin 

(PAO) carrier fluid, SHF 21 (Exxon-Mobil). The first fluid, MRF-40, had a density of 3.53 g/cm, 

a CI concentration of 40 vol%, and no glass beads. The second fluid, MRF-37, had a density of 

3.26 g/cm, a CI concentration of 35.7 vol%, and a glass bead concentration of 4.3 vol%. A 

standard additive package of lithium-12-hydroxystearate and ZBPD was also used in both fluids. 

 The off-state viscosity and yield stress of both MRF samples were determined using the 

same Paar Physica MCR 300 parallel disk rheometer mentioned in chapter 2, section 2.2.1. In the 

absence of magnetic field, a test was run to measure off-state viscosity. A volume of 0.15 ml 

MRF sample was placed in the rheometer test section, which had a 0.5 mm gap separating the 

rotating disk from the platen. When current was applied, the magnetic field lines were oriented 
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normal to the parallel disks. The flow curves (shear stress vs. shear rate) were then measured. To 

measure flow curves in the presence of magnetic field, a volume of 0.3 ml MRF sample was 

placed between the platen and rotating disk separated by a 1 mm gap. The current was increased 

from 0.2 A to 4 A during sequential tests. 

 Flow curves were characterized using the Bingham Plastic (BP) model (Ngatu and 

Wereley, 2007) described in chapter 2, section 2.3.1.3. 

3.2.1.2 Results and Discussion  

The flow curves are shown in Figure 3.1. The BP model was used to characterize the 

flow curves for the viscosity and yield stress of both fluids. It allowed for a better visualization 

of the MR effect on the MRF shear stress as the current (i.e., magnetic field) increased. 

From Figure 3.2, the MRF-37 (with glass beads) had a 22% higher off-state viscosity, 

and from Figure 3.3, both fluids exhibited a variation in maximum yield stress of only 10%. 

Using a similar parallel disk rheometer (Anton-Paar MCR 501), measurement uncertainty 

was estimated to be ±1-5 kPa (5-13%) in the measured on-state yield stress over the range of 

approximately 0-1.1 Tesla. This is based on repeat measurements of MRFs with iron (Fe) solids 

loading of 20, 30 and 45 vol%. 

3.2.2 Sedimentation Testing 

3.2.2.1 Setup and Instrumentation 

Sedimentation tests were performed in order to measure settling rates. Sedimentation 

tests were conducted with an inductance-based sensing coil fabricated in-house (Ngatu and 

Wereley, 2007), a GW INSTEK LCR-816 inductance meter, and a height gauge to mount and 

gradually move the sensor (Figure 3.4). 
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A uniformly dispersed (well-mixed) MRF was placed in a vertical column (1/4-inch test 

tube). As settling progressed, there was a distinct boundary, or mudline, between the clarified 

carrier fluid above and the MRF below. The permeability of a volume of fluid in the test tube 

was measured using the sensing coil, and data were logged via computer. As the mudline 

traveled downwards through the sensing coil, the permeability of the fluid volume contained 

therein decreased. A mudline position curve (Figure 3.5) was first constructed for both MRFs 

(MRF-37 and MRF-40). Inductance was measured by manually shifting the sensing coil upward 

at fixed increments. The MRF was initially fully enclosed in the sensor. Then the sensor was 

moved to a final position, which was above the mudline location, hence enclosing no fluid. The 

mudline position curve exhibited a linear region between inductance and mudline location. The 

sedimentation velocity or settling rate was determined by continuously calculating the 

inductance as the MR fluid settled. As the mudline traveled down through the sensor in the 

tubular column, reducing the volume fraction of the CI particles in the fluid, the experimental 

data was generated. The slope of the mudline descent versus time yielded the sedimentation rate 

(Ngatu and Wereley, 2007). 

3.2.2.2 Results and Discussion  

The settling rates of both MRFs were measured with the inductance-based sensor. 

Impedance data were measured as the mudline descended a distance of 6.35 mm in a column 

filled with a well-mixed MRF sample. The impedance meter measured the inductance of the 

MRF inside the fluid column and enclosed within a coil sensor. The mudline descents of the 

MRF-40 and MRF-37 samples are compared in Figure 3.6. This testing method was previously 

used for other studies in chapter 2 section 2.3.2 and in reference (Ngatu and Wereley, 2007) as 

well, in which procedures and error measurements were discussed in detail. The error in the 
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mudline descent measurement was estimated to be 6.35 mm ±0.05 mm based on noise statistics. 

The sedimentation rate was taken as the rate of change of the mudline descent. The 

sedimentation rate of the MRF-37 sample (with glass beads) had a slightly lower sedimentation 

rate (0.041µm/s) than the MRF-40 sample (0.043 µm/s) with no glass beads, as expected, due to 

its lower specific gravity. However, this effect was not substantial. 

3.2.3 Low Speed Dynamic Testing of an MR Damper  

3.2.3.1 Setup and Instrumentation  

The yield force and post-yield damping of MR dampers, filled with either MRF-40 or 

MRF-37, were determined by analyzing the behavior of a modified Rheonetic SD-1000-2 MR 

damper from Lord Corporation, which was tested for characterization under sinusoidal loading at 

a frequency of 1 Hz. The MR damper and test setup on a servo-hydraulic testing machine (MTS-

810) are depicted in Figure 2.7 of chapter 2. Forces versus displacement data were analyzed 

using the Nonlinear BiViscous (NBV) model (Stanway et al., 1996). 

3.2.3.2 Test Inputs 

The frequency of excitations was chosen to be 1.0 Hz for characterization. The damper 

excitation amplitude was 5.08 mm. In order to apply a magnetic field inside the damper, electric 

current from a DC power supply (from 0 to 3 A with 1 A increment) was used to power the 

magnetic circuit.  

3.2.3.3 Results and Discussion 

The MRF-40 and MRF-37 (with glass beads) samples were studied using a linear stroke 

MR damper (Snyder et al., 2001). Data shown in Figures 3.7 and 3.8 are the force versus 

displacement and the force versus velocity curves varying from 0 to 3 A, reconstructed using the 
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NBV model, respectively. The NBV model was employed to represent force versus velocity 

damper response, and provided a means to estimate yield force (퐹 ) and post-yield damping 

(퐶 ).  

3.2.4 Fatigue Testing  

3.2.4.1 Instrumentation and Test Inputs 

The yield force of the MR damper, filled with MRF-37, was determined by analyzing the 

behavior of the same modified Rheonetic SD-1000-2 MR damper from Lord Corporation, which 

was tested under sinusoidal loading at a frequency of 4 Hz for an endurance test conducted, and 

the damper excitation amplitude was also 5.08 mm. 

Testing was done with no electric current hence no magnetic field in the electromagnet. 

Forces versus displacement data were analyzed using the Nonlinear BiViscous (NBV) model. 

3.2.4.2 Results and Discussion 

An endurance test was carried out where the MR damper was cycled at 4 Hz for a total of 

518,400 cycles. The yield force was characterized by fitting the NBV model to the force versus 

velocity data taken at 1 Hz during a number of breaks in the endurance tests indicated by the 

symbols in Figure 3.9. For 518,400 cycles, the peak value of the yield force followed similar 

trends for each current value, that is, the force decreased markedly until nominally 250,000 

cycles at 4 Hz had been completed, and leveled off to remain relatively constant (Figure 3.9). 

The constant yield force levels (dashed lines) correspond to the single point baseline yield force 

measured for MRF-40 and extended across the plot for comparison only. Based on the 

experimental results, the glass beads do not seem to contribute toward shear thickening.  In 
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Figure 3.10, the post-yield damping decreased then remained constant as the number of cycles 

increased. 

The ratio of maximum to minimum yield force at a particular current value is plotted as a 

function of number of cycles (Figure 3.11). It was observed that adding glass beads to the MRF 

increased the yield force by multiplicative factors ranging from 2 to 3.2 for current values 

between 1 to 3 A. These results show experimentally that the glass beads increased the yield 

force of the MR damper, thereby enhancing magnetorheology (Klingenberg and Ulicny, 2011; 

Ulicny et al., 2010). 

3.2.4.3 Nonmagnetic Particles Mechanical Separation 

The glass beads were mechanically separated from the MRF using a solvent. In this 

study, acetone was added to a small volume of MRF (10 ml) in a beaker and stirred for about 10 

minutes. The CI particles settled at the bottom of the container, and the clear solution of acetone 

and carrier oil was transferred to a different beaker, which was heated to the acetone boiling 

point of 56 degrees Celsius. The carrier oil, which floated atop the surface of the solution was 

then separated using a spoon, and the resultant solution of acetone was left to boil until complete 

evaporation and a white residue became clearly visible. This residue was placed on a thin slide 

and examined under an optical microscope with a magnification of x25. 

3.2.4.4 Nonmagnetic Particles Investigation: Pre-Cycle and Post-Cycle  

The durability of the glass beads during the endurance test was examined before and after 

518,400 sinusoidal loading cycles at 4 Hz using an optical microscope with a magnification of 

x25. Photomicrographs of the glass beads, both before and after the endurance test are shown in 

Figure 3.12 (a) and (b), respectively. The glass beads were mechanically separated from the 

MRF using a solvent, pre-and-post cycling of the MR damper.  Before cycling, the micrometer-
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scale glass beads were spherical and undamaged. After the endurance test, the glass spheres were 

completely crushed and no longer visible in the MRF, in Figure 3.12 (b). Therefore, damper 

cycling caused the glass beads to break into ultra-fine pieces, which did not contribute to an 

increase in MRF off-state viscosity. 

3.3 Conclusions 

The behavior of two MRF compositions was investigated. The first fluid, MRF-37, had 

35.7 vol% of iron powder, 4.3 vol% glass beads, and 60 vol% carrier fluid. The second fluid, 

MRF-40, had 40 vol% of iron powder, and 60 vol% carrier fluid. Based on this study, the 

following conclusions are made:  

1. MRF-37 (with glass beads) presented a substantial enhancement (increase) in yield 

force in the as-mixed fluid damper cycling tests. The yield force more than doubled in the 

damper tests at high field strengths (here 2 to 3 A in the electro-magnet) suggesting that 

nonmagnetic fillers can substantially increase damper yield force. 

2. MRF-37 (with glass beads) had an off-state viscosity 22% greater than the MRF-40 

(no glass beads). 

3. After subjecting MRF-37 to endurance testing (i.e., 518,400 cycles of sinusoidal 

loading at 4 Hz), the yield force enhancement effect was eliminated because the glass beads were 

eroded or crushed to very small sizes. This further supports the conclusion that the glass beads 

are the strong contributing factor to the damper yield force enhancement. 

MRF-37 would provide a lower specific gravity fluid with a much higher damper yield 

force at full field, thereby providing performance improvements for applications where the MR 

device is intended for single or infrequent use. For cases where extensive cycling would be 

required, a more durable filler that is not subject to erosion, as glass beads are, would be more 
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appropriate. Further study (Klingenberg and Ulicny, 2011) is needed to better describe the 

underlying physics contributing to the yield force enhancement in the MR damper when using 

MRF with glass beads. 
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Figure 3.2. Magnetorheology: off-state viscosity 

 
Figure 3.1. Flow curves, or shear stress vs. shear rate, measured using a parallel disk 
magneto-rheometer 
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Figure 3.4. Sedimentation rate measured using a column of MRF and an inductance 
sensor interrogated using an inductance meter 

MRF: Magnetorheological fluid 

 

Figure 3.3. Magnetorheology: yield stress as a function of current 
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Figure 3.6. Mudline descent versus time for MRF-40 and MRF-37 (with glass beads) 

 
Figure 3.5. Inductance as a function of mudline location within the sensor 
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Figure 3.8. Cyclic damper data compared with NBV model for MRF-37: force vs. 
velocity 
 

 
Figure 3.7. Cyclic damper data compared with NBV model for MRF-37: force vs. 
displacement 

NBV: Nonlinear BiViscous 
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Figure 3.10. MR damper post-yield damping as a function of number of cycles 
 
 

 
Figure 3.9. MR damper yield force as a function of number of cycles 

MR: Magnetorheological 
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(a)                                                                  (b) 

Figure 3.12. Optical micrographs of glass beads: (a) Glass beads prior to cycling 
magnified 25x (b) Glass beads post-cycling magnified 25x 

 

 
Figure 3.11. Ratio of maximum to minimum yield force vs. number of cycles 
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CHAPTER 4: Adaptive Magnetorheological Landing Gear 

Damper Using Passive Valves to Maximize Sink Rate Range 

4.1 Introduction and Overview 

Adaptive landing gear dampers that can continuously adjust their stroking load in 

response to various operating conditions are investigated to improve the landing performance of 

a lightweight helicopter. In our prior work, adaptive magnetorheological (MR) landing gear 

dampers for a lightweight helicopter that maintained a constant peak stroking force of 4000 lbf 

across sink rates ranging from 6-12 ft/s were designed, fabricated and successfully tested. This 

represented a 300% increase in the energy attenuation requirement over the entire sink rate range 

when compared to the performance of the current passive hydraulic landing gear dampers 

utilized in the MD-500 helicopter (Choi et al., 2012). In this follow-on effort, it was desired to 

expand the high end of the sink rate range further, so that the peak stroking load could be held 

constant for sink rates ranging from 6-26 ft/s, thereby extending the high end of the speed range 

from 12 ft/s in the first study to 26 ft/s, while preserving low speed force levels. To achieve this 

increase in the high end of the sink rate range, the U.S. Army Aviation Development Directorate 

- Aviation Applied Technology Directorate (AATD), Boeing, and the University of Maryland 

jointly developed an adaptive MR landing gear damper that can continuously adjust its stroking 

load during hard landing and crash impact events to protect the occupants and minimize aircraft 

damage. This adaptive landing gear damper is part of a comprehensive Active Crash Protection 

System (ACPS) being developed by Boeing and AATD. The ACPS under development can 

predict an impending hard landing or a crash event as well as activate and control a crashworthy 

subsystems such as adaptive landing gears, active seats and restraint systems, and external 
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airbags to maximize the crash survivability of the aircraft and occupants. The adaptive landing 

gear damper developed in this study operates with a spring-based passive (or relief) valve. The 

MR valve was designed to semi-actively control the peak stroking load over the 6-12 ft/s sink 

rate range, whereas the relief valve was designed to passively control the stroking load over the 

12-26 ft/s sink rate range.  

A main goal of an adaptive landing gear system is to adapt the load stroke profile in 

response to payload and sink rate variations of a helicopter. Consequently, the objective of this 

current effort in this chapter is to maintain a constant stroking load of 4000 lbf over an extended 

equivalent sink rate range (6-26 ft/s) while considering the same challenges encountered in prior 

work, such as controlling of the load stroke profile for short duration event (50-200 ms), keeping 

adaptive landing system compact and lightweight, and adjusting the load with control algorithms 

based on real time measurements of sink rate and crash harshness (Choi et al., 2012). The 

motivation behind this current work stems from different aspects of adaptive MR landing gear 

systems and applications that have been investigated by several research groups (Choi et al., 

2012; Choi and Wereley, 2003; Mikulowski and Holnicki-Szulc, 2007; Batterbee et al., 2007a; 

Batterbee et al., 2007b; Lin et al., 2009; Mikulowski and LeLetty, 2008) and discussed in 

chapter 1.  

The MR valve of the proposed landing gear system was designed using a nonlinear 

analytical damper model considering the field dependent Bingham-plastic behavior of MR fluids 

and nonlinear viscous loss factors that are dependent on velocity squared. The passive valve was 

designed based on a computer simulation related to spring dynamic equations of motion, which 

estimated the force behavior of the passive valve of the MR landing gear damper to meet the 
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desired stroking load of 4000 lbf over the desired sink rates of 12-26 ft/s. Using the MR damper 

analysis, a spring-based passive valve MR landing gear damper was designed and constructed.  

A nonlinear analysis based on the pressure drop across the MR valve and the passive 

relief valve center orifice was performed to estimate the center orifice diameter. Two different 

springs were designed and used (a conventional coil spring and a spiral wave spring) for the 

analysis. In addition, an electromagnetic analysis of the MR valve in the landing gear damper 

was conducted to predict the magnetic field strength in the MR gap. Two spring-assisted passive 

relief valves were constructed, and an experimental study using an MTS machine was conducted 

to evaluate the damper force behavior of the spiral wave and coil spring-based MR landing gear 

dampers to verify that the relief valve operated properly. 

4.2 Summary of the Design Targets  

Passive hydraulic landing gear dampers, currently used on the MD-500 helicopter fixed 

landing gear systems, are single-staged and cannot reach the low and high-speed design targets 

while maintaining a constant stroking force of 4000 lbf over a wide equivalent sink rate range. 

The equivalent sink rate is determined by a multiplicative factor of 2.7, which is used to emulate 

the kinematic relationship between the skid of the helicopter and the location of the installed MR 

landing gear damper. In prior work related to this study, the equivalent sink rate range was 6-12 

ft/s, and the existing MD-500 helicopter passive hydraulic forward and aft dampers were not 

capable of maintaining a constant stroking load over these particular speeds targeted, as shown in 

Figure 4.1 (a) and (b). Consequently, a flow-mode type MR landing gear damper (MRLGD) was 

initially proposed, in prior study, as a retrofit to the existing passive landing gear damper. The 

MR landing damper was successfully designed, tested, and analyzed, and it was capable of 

holding constant, a desired stroking load of 4000 lbf over the desired equivalent sink rate range 
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of 6-12 ft/s. The initial MRLGD was designed using a Bingham-plastic model (BPM) 

incorporating minor viscous loss factors (proportional to velocity squared). Figure 4.2 depicts the 

stroking load or damper force of the MRLGD versus the equivalent sink rate. As seen in this 

figure, the MRLGD was designed to theoretically meet the desired stroking load of 4000 lbf at 

the lowest design equivalent sink rate of 6 ft/s by activating the magnetic circuit of the MR valve 

and maintaining the stroking load at 4000 lbf. However, at the high-end equivalent sink rate 

range of 12 ft/s, the MRLGD met the desired stroking load of 4000 lbf when the MR valve was 

turned off (Choi et al., 2012). 

The new unconventional MR landing gear damper with a spring-assisted passive valve, 

discussed in this chapter, intends to maintain a constant stroking load of 4000 lbf over an 

extended equivalent sink range of 6-26 ft/s. The desire is to increase the high-end of the sink rate 

range from 12 ft/s (from prior work) to 26 ft/s, which is a larger increase of the operating sink 

rate range compared to the passive hydraulic damper and the prior designed conventional 

MRLGD, as shown in Figure 4.3.  

4.3 Modeling of the MR Landing Gear Damper with a Spring-Assisted Passive Valve 

4.3.1 Valves Operation: Semi-Active MR Valve and Spring-Assisted Passive Relief 

Valve 

The schematic diagram of the passive (or relief) valve inside the MR landing gear damper 

used in this study is presented in Figure 4.4. In this figure, the MR valve has one annular single 

flow path, one center orifice contributing to the spring-assisted relief valve, three layers of 

magnetic coil windings, a spring, and a seal. The spring in the relief valve is pre-compressed; 

hence, the seal does not open until the MR valve force develops to a desired stroking load of 

4000 lbf.  
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The working principle of the MR valve is that, by activating a magnetic field input inside 

the MR valve, the desired stroking load is produced at an equivalent sink rate of 6 ft/s (Choi et 

al., 2012). At higher equivalent sink rates of about 12 ft/s, the MR valve is turned off and works 

as a passive valve to maintain the desired stroking load. At this point, the spring compresses, and 

the seal is open for the center orifice to work as an additional fluid path such as a bypass valve. 

As a result, the damper force decreases because the MR fluid pressure in the center orifice drops. 

4.3.2 Passive Relief Valve Orifice Diameter Range Optimized 

The diameter of the center orifice of the passive relief valve inside the MR landing gear 

damper is a very important parameter in the design of the system. The diameter size depends on 

the pressure drop across the annular gap and the center orifice flow passage, with magnetic field 

strength turned off in the MR valve. Equations 4.1 and 4.2 are representative of the pressure 

drops across the MR valve and the passive valve center orifice, respectively. 

∆푃 = 푓
휌퐿 푉

4푑 +
휌∑퐾 푉 	

2 																																																				[4.1] 

∆푃 = 푓
휌퐿 푉

4푑 +
휌 ∑퐾 . 푉 	

2 																																													[4.2] 

Here, 휌 is the MR fluid density, 퐿  and 퐿  are the MR annular gap and center orifice passage 

lengths, respectively. 푉  and 푉  are the fluid velocities in the annular gap and center orifice 

passages, and 퐾  and 퐾 .  are the minor loss coefficients. Also, 푓  and 푓  are the Darcy 

friction factors, which are piecewise continuous and Reynolds number dependent (White, 1986; 

Franzini and Finnemore, 1997). In this case, the Darcy friction factors 푓  and 푓  were assumed 

to be the same based on the assumption that the Reynolds number at high speed was fixed at ~ 

5000; hence, the flow was turbulent (Reynolds number, 푅푒	~ 5000, which has to be greater than 

4000 for turbulent flow). The Darcy friction factor is defined in Equation 4.3 as: 
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1
푓 / = −1.8 log

휀/(2푑 )
3.7

.

+
6.9
푅푒 																																							[4.3] 

where 푑  is the diameter of the MR valve gap.  

When the spring-assisted relief valve is open, the seal through the center orifice is 

displaced, and the MR fluid passes through the MR valve as well as the center orifice relief 

valve; hence, Equation 4.4 applies. The flow velocity, 푉  in the MR valve annular gap can be 

defined in terms of the flow velocity 푉  in the center orifice, as shown in Equation 4.5: 

∆푃 = ∆푃 																																																																							[4.4] 

푉 = 푉
푓휌 퐿

4푑 + 휌∑퐾 .
2

푓휌 퐿
4푑 + 휌∑퐾

2

																																																						[4.5] 

Equation 4.5 can be re-written as: 

푉 = 푉 푅																																																																				[4.6] 

The total flow rate in term of the flow rates in each flow passage was then calculated and is 

illustrated in Figure 4.5: 

푄 = 푄 + 푄 																																																												[4.7] 

푄 = 퐴 푉 + 퐴 푉 																																																		[4.8] 

The total flow rate can also be expressed in terms of effective piston area, 퐴 , and piston 

velocity, 푉 , as shown in Equation 4.9: 

푄 = 퐴 푉 																																																													[4.9] 

Substituting Equation 4.6 into Equation 4.8 and solving for 푉 , in terms of 퐴  and 푉  from 

Equations 4.9 lead to Equation 4.10:  
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푉 =
퐴 푉

퐴 푅 + 퐴
																																																								[4.10] 

which can be written as Equation 4.11, 

푉 =
퐴 푉

퐴 푅 + 휋
4 푑

																																																											[4.11] 

where 푅 is defined as: 

푅 =
푓휌 퐿

4푑 + 휌∑퐾 .
2

푓휌 퐿
4푑 + 휌∑퐾

2

																																																				[4.12] 

Then, substituting Equation 4.11 into Equation 4.6 leads to the following: 

푉 = 푅
퐴 푉

퐴 푅 + 휋
4 푑

																																																				[4.13] 

The MR damper force equation is given by: 

퐹 = ∆푃 퐴 																																																																	[4.14] 

Equation 4.1 is then substituted to the MR damper force equation defined in Equation 4.14, and 

the flow velocity expression for 푉  from Equation 4.13 is substituted as well; all of which lead 

to the equation below: 

퐹 = 푅
퐴 푉

퐴 푅 + 휋
4 푑

푓
휌퐿
4푑 +

휌∑퐾
2 퐴 																																						[4.15] 

Equation 4.15 is expressed in terms of the passive relief valve center orifice diameter, 푑 , and 

the MR damper force versus the sink rate is illustrated in Figure 4.6 for different passive relief 

valve center orifice diameters. The maximum achievable center orifice diameter of the passive 

relief valve is 푑 =	9.398 mm (or 0.37 inches) and is illustrated in Figure 4.7.  
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4.3.3 Electromagnetic Analysis of the MR Valve using ANSYS  

A commercial simulation software (ANSYS) was used to perform an electromagnetic 

analysis of the MR valve in the landing gear damper. This analysis was carried out to predict the 

magnetic field strength in the MR gap, while taking into consideration the diameter of the center 

orifice of the passive relief valve. This analysis was also performed to calculate the MR yield 

force using Equation 4.16 for the pressure drop across the MR gap due to the MR fluid yield 

stress effect. In this equation, 퐿  is the total active length of the MR valve, 휏  is the MRF yield 

stress, and 퐷  is the hydraulic diameter (퐷 = 2푑 , where 푑  is the MR valve gap diameter).    

∆푃 =
4퐿 휏
퐷 																																																													[4.16] 

The design parameters of the MR valve with the center orifice of the passive relief valve 

are presented in Table 4.1, and the low speed design target of maintaining a constant damper 

stroking load of 4000 lbf at 6 ft/s is satisfied, as presented in Figure 4.8. These results were 

generated based on the Bingham Plastic modeling (BPM) used in prior work related to this study 

in reference (Choi et al., 2012).  

The MR fluid used for this study was Lord Corporation MRF-132DG with a density of 

2.95-3.15 g/cm3. This particular fluid magnetic saturation is around 49 kPa. The center orifice 

diameter of the passive relief valve was adjusted to meet the high-end of the sink rate range of 

the design target, which is to maintain the damper stroking load constant at 4000 lbf at a sink rate 

of 26 ft/s. Meanwhile, it is important to note that the center orifice diameter adjustment was done 

while keeping the maximum attainable yield stress at or higher than 45 kPa, which is as high as 

the previous study (Choi et al., 2012) and necessary to maintain the low speed design target 

satisfied. In order to satisfy both (low and high speed) design targets, the center orifice diameter 
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was selected within the range of 4.8 mm (0.189 inches) to 9.398 mm (0.37 inches), specifically 

7.62 mm (0.30 inches) as shown in Figure 4.9.  

The electromagnetic analysis of the MR valve in the landing gear damper was conducted 

to estimate the magnetic field strength inside the MR valve gap and relate it to the yield stress of 

the MRF used in the damper (Lord Corporation MRF-132CG) to determine whether the MRF 

yield stress could produce sufficient force to satisfy the low speed design target. Figure 4.10 (a) 

shows the yield stress of the MRF-132CG versus the magnetic field strength, 퐻, and Figure 4.10 

(b) is the estimated magnetic field strength inside the MR valve gap. The estimated maximum 

attainable magnetic field strength, 퐻 ., within the MR valve gap is 249 kAmp/m. Relating 

the estimated field strength to the plot (courtesy of Lord Corp.) in Figure 4.10 (a) shows that the 

maximum attainable yield stress is about 47 kPa, which is sufficient to satisfy the low speed 

design target. Figure 4.11 (a) and (b) illustrate the estimated magnetic flux lines generated by the 

magnetic coil windings and the magnetic field strength, 퐻, inside the MR valve gap, 

respectively. Figure 4.12 (a) and (b) show the magnetic field density, 퐵, inside the MR valve 

gap. 

4.3.4 Analysis of MR Landing Gear Damper with Spring-Assisted Passive Valve  

A hydraulic model of the MR and passive valves of the landing gear damper is presented 

in Figure 4.13.  The total damping force, 퐹 , of the MR damper can be expressed as follows: 

퐹 = 퐴 ∆푃																																																																				[4.17] 

Here, 퐴  is the effective piston area of the MR landing gear damper and ∆푃 is the pressure drop 

across the valves. 
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4.3.4.1 Passive Valve Closed 

When the seal closes the spring-assisted relief valve of the center orifice, the MR fluid’s 

only path is through the MR valve as shown in Figure 4.13 (a); hence, the following equations 

apply: 

	∆푃 = 	 ∆푃 																																																																	[4.18]                                                            

∆푃 = 	 																																																															[4.19]                                                            

푄 = 퐴 푉 = 푄 																																																								[4.20]                                                

푄 = 0																																																																			[4.21] 

∆푃  is the pressure drop through the MR valve, and ∆푃  is the pressure drop through the 

relief valve. 푄  is the total flow rate passing through the piston, and 푉  is the piston velocity. 

푄  is the flow  rate  passing  through  the MR valve, and  푄  is the flow rate passing 

through the relief valve. The pressure drop through the MR valve, ∆푃 , is derived from a 

Bingham-plastic type damper model incorporating minor loss factors, which are proportional to 

velocity squared, and is given as follows: 

∆푃 = 	 푛푓
휌 퐿 + 퐿

4푑
푄
퐴 +

휌 퐾 + 퐾
2

푄
퐴 +

2푛퐿 휏
푑 												[4.22] 

Here, 휌 is the density of the MR fluid, 퐿  is the active MR valve length associated with one 

magnetic coil winding, and 퐿  is the length of one magnetic coil winding. 퐴  is the flow area of 

the MR valve; 푛 is the number of magnetic coil windings, and 푑  is the gap diameter of the MR 

valve. 퐾  and 퐾  in Equation 4.22, are the minor loss factors in the MR valve associated 

with sudden entrance and exit effects, respectively. In this study, it was assumed that 퐾 =

0.7 and 퐾 = 0.5 (White, 1986; Ideľchik, 1994; Franzini and Finnemore, 1997; Spurk and 

Aksel, 2008). The Darcy friction factor, 푓, is a piecewise continuous function of the Reynolds 
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number, and detailed equations are given in (Choi et al., 2012). In addition, in Equation 4.22, 휏  

is the MR fluid yield stress (Mao et al., 2005; Wereley and Pang, 1998). 

4.3.4.2 Passive Valve Open  

When the spring-assisted relief valve is open, the seal through the center orifice is 

displaced, and the MR fluid passes through the MR valve and the center orifice relief valve as 

shown in Figure 4.13 (b); hence, the following equations apply: 

∆푃 = ∆푃 = ∆푃 																																																					[4.23] 

푄 = 푄 + 푄 																																																								[4.24] 

Here, the pressure drop of the relief valve, ∆푃 , is determined by the pressure drop due to the 

seal’s opening as follows (Choi et al., 2005; Merritt, 1967): 

∆푃 =
휌푄

2 퐴 퐶
																																																						[4.25] 

Note that Equation 4.25 is held under the assumption that the diameter of the center orifice is big 

enough, so that its pressure drop is negligibly smaller than the pressure drop due to the seal’s 

opening. Here, the discharge coefficient, 퐶 , is given by: 

퐶 =
퐶 퐶

1 − 퐶
퐴
퐴 	

																																																												[4.26] 

where, 퐶  is the velocity coefficient (퐶  = 1), and 퐶  is the contraction coefficient (퐶  = 0.611) 

(Merritt, 1967). In addition, 퐴  is the flow area of the opened relief valve orifice, and is 

calculated using: 

																																																													퐴 = 휋푑 푥																																																															[4.27] 

where 푑  is the center orifice diameter and 푥 is the displacement of the seal.  
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i. Single-Degree-of-Freedom Mass Spring Damper Lumped Model 

Using a single DOF mass-spring-damper lumped model shown in Figure 4.13, the 

displacement of the seal was calculated by numerically solving the following equation 

푀푥̈ + 푐푥̇ + 푘푥 = 퐹
퐴
퐴 − 퐹 																																																[4.28] 

where																																																		퐹 =
퐴
퐴 4000	푙푏 																																																							[4.29] 

Here, 푀 is the mass of the seal, and 푐 is the damping of the spring, 푘 is the stiffness of the 

spring, and 퐴  is the cross-sectional area of the center orifice. 

ii. Calculation of Flow Rates 

The flows at each path depend on the pressure drop, and the fluid resistances are 

nonlinear functions of flow rates. As a result, the flow rates 푄  and 푄  are not 

straightforwardly determined from the total flow rate, 푄 . Hence, a numerical iteration method 

(Choi, 2005b) was used to calculate each flow rate. The first step in the process of the iteration 

method starts by guessing the initial flow rates as follows: 

푄 =
푄
2 	and	푄 =

푄
2 																																															[4.30] 

Using Eq. 4.22 with initial flow rates 푄  and 푄 , the new flow rate, 푄  is computed as 

follows: 

푄 = 퐴 퐶
2∆푃 |

휌 																																								[4.31] 

Where ∆푃 |  is obtained from replacing 푄  with 푄  in Eq. 4.22. Then, it is necessary 

to calculate the error of the estimated total flow rate as follows: 



www.manaraa.com

76 
 

푄 + 푄 − 푄 ≤ 훾																																														[4.32] 

Here, 훾 is the predefined error. If the error of the estimated total flow rate is not smaller than the 

predefined error, then the new initial flow rate, 푄 , of the MR valve needs to be increased or 

decrease by: 

푄 = (1 ± 훿)푄 																																																					[4.33] 

Here, 훿 is the convergence rate of the estimation to the flow rate. 

4.4 Design of MR Landing Gear Dampers with a Spring-Assisted Passive Relief Valve 

4.4.1 Design of the Spring-Assisted Passive Relief Valve 

Using equations 4.17- 4.33, the damper force of the MR landing gear damper with the 

spring-based passive valve was estimated to meet the desired stroking load of 4000 lbf over the 

desired sink rate range of 6-26 ft/s. Figure 4.14 represents the estimated force of the MR landing 

gear damper with the spring-assisted passive valve versus sink rate. In this case, a spring 

stiffness of 50 lbf/in was chosen as soft stiffness is necessary for a better relief performance 

of the passive relief valve. As illustrated in Figure 4.14, the damper force generated by the 

activation of the MR valve (퐹 ) can theoretically meet the desired stroking load of 4000 lbf at 

the low sink rate of 6 ft/s. Then, at higher sink rate, the MR landing gear damper theoretically 

meets the desired stroking load by turning off (퐹 ) the MR valve and releasing additional MR 

fluid by cracking the pressure when the center orifice relief valve opens up.  

 

 

 

k
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4.4.1.1 Spring Design and Construction of the MR Landing Gear Damper 

Coupled with the Passive Valve  

i. Spring Design 

Two different types of springs were custom designed and compared in order to 

implement the spring stiffness of 50 lbf/in while taking into account the dimensions and 

configuration of the MR landing gear damper. One was a crest-to-crest spiral wave spring 

(Smalley Steel Ring Company, 2011), and the other spring was a conventional coil spring (Mid-

West Spring and Stamping, 2011). Table 4.2 highlights each spring properties, and Figure 4.15 

illustrates their dissimilarities. The fundamental formula to custom design the spiral wave spring 

stiffness was as follows: 

푘 =
퐸푏푡 푁
퐾퐷 푍

∗
푂.퐷.
퐼.퐷. 																																																						[4.34] 

Here, 퐸 is the Modulus of elasticity, 푏 is the radial width of material 

	 	( . .)	 	 	 	( . ). , and 푡  is the spring material thickness. 푁 is the 

number of waves per turn, and 퐾 is the multiple wave factor, which was selected to be 3.88 as it 

depended on the number of waves per turn, 푁  (Smalley Steel Ring Company, 2011). 퐷  is the 

mean diameter  	 	( . .)	 	 	 	( . ). , and 푍 is the spring number of turns. 

Figure 4.16 illustrates the spiral wave spring stiffness and its nomenclature. Based on 

calculations from Equation 4.34, the spiral wave spring stiffness was selected to be 59.8 lbf/in (or 

10472.6 N/m) considering the bore diameter (1.30 in or 3.30 cm) within which the spring 

operates inside the landing gear damper and the pre-compressed spring force of 72 lbf (or 320.27 

N), as shown in table 4.2.  
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The fundamental formula to custom design the conventional coil spring stiffness was as 

follows (Wahl, 1963):  

                                                           [4.35] 

where, 퐺 is the modulus of elasticity of spring material in shear, 푑 is the diameter of spring wire, 

푛  is the number of active coils, and 퐷 is the mean coil diameter, 	 	( . .) 	 . 

Based on calculations from Equation 4.35, the coil spring stiffness was selected to be 47.5 lbf/in 

(or 8318.5 N/m), as shown in table 4.2. 

ii. Valve Construction and Assembly 

Two spring-based relief valves of the MR landing gear damper (one with the spiral wave 

spring and the other with the coil spring) were manufactured and assembled (see Figure 4.17 and 

4.18), and their damper force performance was experimentally tested. As illustrated in Figures 

4.17 and 4.18, either spring was positioned and pre-compressed between the spring assembly top 

and bottom parts and secured with nuts and bolts. The seal was fastened on the lower part of the 

spring assembly and positioned to regulate the release of MR fluid through the orifice located in 

the center of the magnetic bobbin. Finally, a cap was fitted at the lower end of the bobbin and 

was designed to keep the magnetic flux return safely in place. 

4.4.1.2 Passive Relief Valve Implementation Verification using a “Dummy 

Bobbin”  

i. Testing Strategy with a Material Testing System (MTS) Machine 

After manufacturing two different spring-assisted relief valves (spiral wave and coil 

springs) for the MR landing gear damper, their damper force performance was experimentally 

tested using an 810 MTS servo-hydraulic testing machine (MTS machine) at lower sink rates in 

3

4

8nD
Gdkcoil 



www.manaraa.com

79 
 

order to verify that the relief valve was working appropriately (see figure 4.19 for the damper 

setup on the MTS machine). In order to experimentally evaluate the damper force behavior of the 

spiral wave or coil spring-based MR landing gear damper, a series of ramp damper tests was 

conducted. In this ramp damper test, a constant piston velocity was applied to the MR landing 

gear damper using the hydraulic exciter of the MTS machine (see Figure 4.19). Under the 

estimated damper force designed and shown in Figure 4.14, the relief valve for the magnetic 

field-off case starts to open between 11-12 ft/s. It is important to note that the MTS machine can 

only reach speeds up to about 2.3 ft/s (0.7 m/s), which corresponds to an equivalent sink rate of 

about 6.2 ft/s (1.89 m/s), as illustrated in Figure 4.20. Consequently, The desired equivalent sink 

rate range of 11 ft/s-26ft/s for the magnetic field-off case cannot be implemented by the MTS 

machine.  

ii. Design of an MR bobbin with No Electromagnetic Coil (Dummy 

Bobbin) 

The testing strategy to perform the ramp tests on the MTS machine was to modify a 

“dummy” bobbin design parameters to have the relief valve opening at 4.4 ft/s (1.34 m/s), as 

simulated in Figure 4.21 to prevent reaching the MTS equivalent sink rate limit of 6.2 ft/s (or 

1.89 m/s), while maintaining the damper force at the desired stroking load of 4000 lbf. In this 

case, instead of the electromagnetic coil winding that activates the MR fluid inside the MR 

landing gear damper, the dummy bobbin was used to check if the relief valve worked correctly. 

This dummy bobbin was designed to make the MR landing gear damper without current input 

produce similar damper force as the force level of the MR landing gear damper with a constant 

current of 4 A. The annular gap of the dummy bobbin was reduced from 0.79 mm (or 0.0311 

inches) from the designed electromagnetic coil winding gap to 0.50 mm (or 0.0197 inches) in 
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order to increase the field-off damper force. The Figures 4.22 and 4.23 show the different 

components needed for the dummy bobbin valve assembly with the spiral wave and coil springs, 

respectively. 

4.4.2 Ramp Testing and Results of MR Landing Gear Damper with Spring-Assisted 

Passive Valve 

Figure 4.24 presents a comparative study of the damper force performance of the spiral 

wave or coil spring-based MR landing gear dampers with the “no orifice” MR landing gear 

damper, both equipped with a dummy bobbin. In this figure, “no orifice” implies that the center 

orifice of the dummy bobbin was closed with a setscrew; thus, the relief valve was blocked. In 

addition, the MRF amount filled in the MR landing gear damper was 767 grams for the spiral 

wave spring-based damper case and 775 grams for the coil spring-based damper case due to the 

different relief valve assembly volumes. The initial gas pressure of the MR landing gear damper 

was 100 psi (6.89 bar), and the magnetic field was turned off for each case. As shown in figures 

4.24 (a) and (b), the MR landing gear dampers for the three different configurations show similar 

damper forces at low constant velocities of 0.1 m/s (0.33 ft/s) and 0.4 m/s (1.31 ft/s) because the 

damper force level was below the relief valve pre-set force level of 4000 lbf; hence, the seal does 

not open. However, at higher constant velocities of 1.2 m/s (3.94 ft/s) and 1.6 m/s (5.25 ft/s), as 

shown in figures 4.24 (c) and (d), the no orifice case shows higher damper force than the spiral 

wave and coil spring-based MR landing gear damper cases. It means that the relief valve is open 

because the damper force level passes the pre-set force level of 4000 lbf. On the other hand, 

compared to the coil spring-based MR landing gear damper case, the spiral wave spring-based 

MR landing gear damper case shows more stable transient behavior as shown in figure 4.24 (d). 
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This phenomenon may occur due to the fact that the spiral wave spring is axisymmetric to the 

center guide of the bottom part of the spring assembly and more balanced than the coil spring. 

4.5 Conclusions 

An adaptive magnetorheological (MR) landing gear damper with a spring-assisted 

passive relief valve for a lightweight helicopter was designed to maintain a constant peak 

stroking force of 4000 lbf across sink rates ranging from 6-26 ft/s. It was desired to expand the 

high end of the sink rate range from 12 ft/s from a prior study to 26 ft/s, while preserving low 

speed force levels. To achieve this increase in the high end of the sink rate range, the adaptive 

landing gear damper developed in this study was equipped with an MR valve that was designed 

to semi-actively control the peak stroking load over the 6-12 ft/s sink rate range and a spring-

assisted passive (or relief) valve that was designed to passively control the stroking load over the 

12-26 ft/s sink rate range.  

The MR valve was designed using a nonlinear analytical damper model or Bingham-

plastic model that depended on the behavior of MR fluids and nonlinear viscous factors. The 

passive relief valve was designed based on a computer simulation related to spring dynamic 

equations of motion, which estimated the damper force behavior to meet the desired stroking 

load of 4000 lbf over the desired sink rate range of 12-26 ft/s.  

A nonlinear analysis based on the pressure drop across the MR valve and the passive 

relief valve center orifice was carried out to estimate the center orifice diameter range. The 

optimal diameter of the center orifice was estimated to be 0.3 inches (7.62 mm).  

Two different springs were used (a conventional coil spring and a spiral wave spring) for 

the analysis and construction of the valves. Moreover, an electromagnetic analysis of the MR 

valve in the landing gear damper using the commercial software ANSYS was performed to 
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predict the magnetic field strength in the MR gap while taking into consideration the center 

orifice diameter selected.  

Finally, an experimental study using an MTS machine was performed to evaluate the 

damper force behavior of the spiral wave and coil spring-based MR landing gear dampers to 

verify that the relief valve operated properly. A dummy bobbin was designed, fabricated, and 

tested using ramp damper tests. In these ramp tests, instead of the electromagnetic coil winding 

that activates the MR valve, the dummy bobbin was used to check if the relief valve worked 

correctly due to the speed limitation of the servo-hydraulic testing machine. Using the MTS 

machine, the stroking load (or damper force) of the MR landing gear damper coupled with a 

spring-assisted relief valve was measured for constant velocity inputs to verify that the spring-

based relief valve was working appropriately. Three different damper configurations such as a 

dummy bobbin with no relief valve, a bobbin with a spiral wave spring-based relief valve, and a 

bobbin with a coil spring-based relief valve were tested. At a constant velocity of 5.25 ft/s, the no 

relief valve case showed higher damper force performance than the spiral wave and coil spring-

based MR landing gear damper cases. This implies that the spiral wave and coil spring-based 

relief valves were opening, hence working properly. Also, the spiral wave spring-based MR 

landing gear damper case showed more stable transient behavior, which could be due to the fact 

that the spiral wave spring was axisymmetric hence well balanced around its center axis as 

compared to the coil spring. 
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Figure 4.2. Initial MR landing gear damper stroking load or damper force versus equivalent 
sink rate (adapted from Choi et al., 2012) 

MR: Magnetorheological 
 
 

 
(a)                                                                   (b) 

Figure 4.1. Passive hydraulic damper performance for MD-500 helicopter: (a) forward 
damper and (b) aft damper 
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Figure 4.4. Schematic of the MR valve coupled with a spring-assisted passive (or relief) 
valve in the landing gear damper for a lightweight helicopter 

 
Figure 4.3. Design targets comparing the predicted performances of MR landing gear 
damper with spring-assisted relief valve to the original MD-500 passive hydraulic damper 
and the previously designed conventional MRLGD 

MRLGD: Magnetorheological landing gear damper 
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Figure 4.6. Damper force (in lbf) versus sink rate (in ft/s) for different orifice diameters, 푑  

 
Figure 4.5. Flow rates in each flow passage of the MR valve and the center orifice of the 
passive valve 
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Figure 4.8. Theoretical damper force of the MR landing gear damper with spring-based 
passive valve versus equivalent sink rate with the low speed design target satisfied 
 

 
Figure 4.7. Maximum achievable orifice diameter needed to reach the high-end of the sink 
rate range target of 26 ft/s 
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Figure 4.9. Theoretical damper force of the MR landing gear damper with spring-based 
passive valve versus equivalent sink rate with the low and high speed design targets 
satisfied. Center orifice diameter 푑  = 0.30 in (7.62 mm) 
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(a) 

 
                                  (b) 

Figure 4.10. Electromagnetic analysis of the MR valve in the landing gear damper to 
relate the magnetic field strength inside the MR valve gap to the yield stress of the MRF 
used in the damper (a) yield stress versus magnetic field strength of the Lord Corporation 
MRF-132CG (b) magnetic field strength inside the MR valve gap 

MRF: magnetorheological fluid 
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(a)                                                                    (b) 

Figure 4.12. Electromagnetic analysis of the MR valve in the landing gear damper: magnetic 
field density,  퐵 (a) front view (b) axisymmetrical view 

 
(a)                                                                     (b) 

Figure 4.11. Electromagnetic analysis of the MR valve in the landing gear damper: magnetic 
field strength, 퐻, (a) magnetic flux lines to be generated by the magnetic coil windings (b) 
magnetic field strength inside the MR valve gap illustrated 
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Figure 4.14. Estimated damper force of the relief valve of the MR landing gear damper versus 
sink rate (with a spring stiffness of 50 lbf/in) 

 
                                     (a)                                                                  (b) 
Figure 4.13. Hydraulic model of the MR and passive valves of the MR landing gear damper: 
(a) relief valve is closed and MRF only flows through the MR valve; (b) relief valve is open 
and MRF flows through two paths (the MR valve and the center orifice relief valve) 
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Figure 4.16. Custom designed spiral wave spring nomenclature (Courtesy of Smalley®. 
All rights reserved) 

 
Figure 4.15. Custom designed crest-to-crest spiral wave and conventional coil springs 

Spiral wave 
spring 

Coil spring 



www.manaraa.com

94 
 

 

 

 
Figure 4.18. Fully assembled MR valves coupled with spiral wave and coil spring-based 
passive valves 

 

 
Figure 4.17. Components and assembly of the spring-based relief valve for the MR 
landing gear damper (either spring is installed between the top and bottom parts of the 
spring assembly) 

 

Spiral wave 
spring 

assembly 

Coil  
spring 

assembly 
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Figure 4.20. MTS machine capability of reaching equivalent sink rates of about 6.2 ft/s (or 
1.89 m/s) while maintaining a stroking load of 4000 lbf in the landing gear damper at the 
University of Maryland  

 

 
Figure 4.19. Damper ramp test setup of the MR landing gear damper on the MTS machine 
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                       (a)                                                      (b) 

Figure 4.22. Spiral wave spring-based passive relief valve with a dummy bobbin; (a) 
components of the spiral wave spring-based relief valve and (b) Valve assembly  

 

 

 
Figure 4.21. MR passive relief valve damper force is designed to open around an equivalent 
sink rate of 4.4 ft/s (1.34 m/s) for MTS ramp tests using the spiral wave spring with a 
stiffness of 59.8 lbf/in and the coil spring using a stiffness of 47.5 lbf/in  

MTS: material test system 
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               (a)                                        (b) 

Figure 4.23. Coil spring-based passive relief valve with a dummy bobbin; (a) components 
of the coil spring-based relief valve and (b) Valve assembly  
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(a) (b) 

     
                                    (c)                                                                         (d) 

Figure 4.24. Comparison of the damper force performance with magnetic field off of the 
spiral wave and coil spring-based MR landing dampers cases to the “No orifice” case. In 
these tests, a dummy bobbin was used instead of the electromagnetic coil winding (a) 
constant velocity of 0.1 m/s (0.33 ft/s), (b) constant velocity of 0.4 m/s (1.31 ft/s), (c) 
constant velocity of 1.2 m/s (3.94 ft/s), and  (d) constant velocity of 1.6 m/s (5.25 ft/s) 
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Table 4.1. Design parameters for electromagnetic analysis of the MR valve in the landing gear 
damper 

Maximum Current (in Amperes) 3.50 

Number of coils 3.00 

Number of turns per coil 189 

Center orifice diameter (mm / inches) 9.40 / 0.37 

Annular gap thickness (mm / inches) 0.79 / 0.03 

Coil active length, 퐿  (mm / inches) 8.38 / 0.30 

MR valve active length, 퐿  (mm / inches) 11.18 / 0.50 

 

Table 4.2. Properties and dimensions of customized spiral wave and coil springs 

Spiral Wave Spring Coil Spring 

Minimum I.D. (mm / inches) 26.213 / 1.032 Minimum I.D. (mm / inches) 30.050 / 

1.183 

Maximum O.D. (mm / inches) 33.02 / 1.30 Maximum O.D. (mm / inches) 33.020 / 

1.300 

Spring rate (N/mm / lbf/in) 10.47 / 59.80 Spring rate (N/mm / lbf/in) 8.32 / 47.5 

Working height @ 288.24-

352.3 N / 64.8-79.2 lbf  

(mm / inches) 

50.80 / 2.00 Solid height @ 404.34 / 90.9 lbf 

(mm / inches) 

14.880 / 

0.586 

Working height @ 376.76 N / 

84.7 lbf  (mm / inches) 

1.788 / 45.420 No. of coils (active / inactive) 3 / 2 

Free height (mm / inches) 2.914 / 74.02 Free height (mm / inches) 63.50 / 2.50 
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CHAPTER 5: Analysis of Spring-Assisted Adaptive 

Magnetorheological Landing Gear Dampers with a Control 

Algorithm 

5.1 Introduction and Overview 

A single stage flow-mode type magnetorheological (MR) landing gear damper was 

designed to attain a desired peak stroking load of 4000 lbf over a desired equivalent sink rate 

range of 6 - 26 ft/s. This represents a considerable increase in the energy attenuation requirement 

over the entire sink rate range and almost 54% increase from the related previous work by Choi 

et al., (2012) where the sink rate range was from 6-12 ft/s. To achieve this increase in the high-

end of the sink rate range, a spring-based passive (or relief) valve MR landing gear damper was 

developed. The MR valve was designed to semi-actively control the peak stroking load over the 

6-12 ft/s sink rate range, whereas the relief valve was designed to passively control the peak 

stroking load over the 12-26 ft/s sink rate range.  

In prior study (Choi et al., 2012), the authors conducted the design and test of an adaptive 

landing gear system, incorporated with MR fluids, that was capable of automatically adapting its 

load-stroke profile to protect the aircraft and its occupants over a wider range of aircraft gross 

weights and sink rates (6-12 ft/s) than conventional hydraulic landing gear dampers. The authors 

used two force feedback control algorithms, which were the bang-bang current control and the 

continuous current control to achieve the desired constant peak stroking load control objective. 

The controlled stroking loads achieved using these two force feedback control algorithms were 

experimentally evaluated using a damper test setup over the desired sink rate range.  
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This current work intends to expand the high end of the sink rate range, so that the peak 

stroking load can be held constant for sink rates ranging from 6-26 ft/s hence extending the high 

end of the speed range from 12 ft/s (from prior work) to 26 ft/s. This can be achieved through the 

use of an adaptive landing gear system. The main purpose of an adaptive landing gear system is 

to adapt the load stroke profile in response to payload and sink rate variations of a helicopter. 

However, there are important challenges to successfully design and implement an adaptive 

landing gear system (Choi et al., 2012). First, the time interval of the landing shock pulse during 

hard landing events is typically 50-200 ms in duration. In order to successfully control the load-

stroke profile over this short period of time, landing gear dampers must be able to adjust their 

stroking load faster than the duration of the shock pulse occurring during the landing event. In 

addition, the adaptive landing gear system must be compact and lightweight and satisfy the 

performance design targets. Finally, the stroking load must be able to adjust automatically in 

accordance with control algorithms based on real-time measurements of sink rate and crash 

severity. The fact that landing loads depend on the helicopter payload and sink rate, as well as 

ground conditions and helicopter attitude, there is a large variation in the landing load pulse 

within which the stroking load of the landing gear damper must be controlled. In order to 

mitigate shock, landing gear devices used in the landing gear systems must be able to adapt in 

real-time to these changes in landing events, and such adaptive capabilities cannot be achieved 

using only passive landing gear dampers with a single condition (single payload mass and 

excitation level), a set load stroke profiles, or manually adjustable load stroke profiles. 

Consequently, the objective of this current effort is to maintain a constant stroking load of 4000 

lbf over an extended equivalent sink rate range (6-26 ft/s) while taking into account the same 

challenges encountered in prior studies. In order to meet these challenges as well as the objective 
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of this work, a spring-based passive (or relief) valve MR landing gear system that has a constant 

cracking pressure, was proposed in this study.  

The motivation behind this current work stems from different aspects of adaptive MR 

landing gear systems. MR application to adaptive landing gear systems has been investigated by 

several research groups (Choi et al., 2012; Choi and Wereley, 2003; Mikulowski and Holnicki-

Szulc, 2007; Batterbee et al., 2007a; Batterbee et al., 2007b; Lin et al., 2009; Mikulowski and 

LeLetty, 2008) referred in Chapter 1. It is important to note that all these studies previously 

mentioned about adaptive MR landing gear systems were designed and tested with scaled-down 

stroking loads intended for laboratory testing.  

Studies to suppress the fuselage vibration for improving the ride quality and safety of 

aircraft have also been explored. Lin et al. (2009) developed a control algorithm using fuzzy 

proportional-integral-derivative (PID) hybrid control for adaptive capability to nonlinear system 

variations. The fuzzy PID hybrid control algorithm could effectively reduce the fuselage 

acceleration when compared to passive control and PID control. Mikulowski and Holnicki-Szulc 

(2007) proposed a closed loop feedback control algorithm to recognize the impact energy based 

on the initial velocity and mass of the falling structure (velocity sensor), determine the optimal 

acceleration value for the adaptive impact absorber, and execute the control signal in the closed 

loop during the process (acceleration sensor feedback). Their closed loop feedback control 

algorithm was successfully implemented to maintain the optimal acceleration level with 

reference to the identified impact energy and the stroke of the adaptive absorber. A flow mode 

type MR landing gear damper was proposed for a lightweight helicopter skid landing gear 

system, which was designed, at full-scale and maintained a desired stroking load of 4000 lbf over 

a desired sink rate range of 6-12 ft/s (Choi et al., 2012). Two force feedback control algorithms 
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(the bang-bang current control and the continuous current control) were proposed to maintain the 

stroking load of the MR landing gear damper constant over the desired sink rate range of 6-12 

ft/s. These control algorithms were experimentally evaluated by using the single damper drop 

test setup. The performance of the MR landing gear damper was experimentally validated over 

the desired sink rate range under the iron-bird drop testing stand which is equipped with four MR 

landing gear dampers and uses a skid landing gear.  

In this follow-on effort, a full-scale, flow-mode type MR valve landing gear damper, 

coupled with a spring-assisted passive valve that has a constant cracking pressure, was developed 

to increase the high end of the sink rate range from 12 ft/s, from prior study (Choi et al., 2012), 

to 26 ft/s while maintain a peak stroking force of 4000 lbf over a desired sink rate ranging from 

6-26 ft/s. Two different springs were used (a conventional coil spring and a spiral wave spring) 

for the analysis. To verify that the spring-assisted passive valve worked properly, a servo-

hydraulic testing system (MTS 810) was used by applying a damper piston velocity with the 

hydraulic exciter of the MTS machine to the MR landing gear damper (Chapter 4). Single 

damper drop tests were conducted at the University of Maryland, College Park to experimentally 

measure the stroking load of the MR landing gear damper coupled with the passive valve over 

equivalent sink rates up to about 18 ft/s. The total drop mass was 430 lbs. In order to maintain 

the peak stroking load of the MR landing gear damper constant over the desired range of sink 

rates of 6-26 ft/s, a bang-bang current control algorithm was formulated using a force feedback 

signal. This control algorithm was experimentally evaluated using the single damper drop test 

setup. To experimentally measure the stroking load of the MR landing gear damper with the 

spring-assisted passive valve over higher desired equivalent sink rates up to 26 ft/s, single 

damper drop tests (with a total drop mass of 1283 lbs) were conducted at Boeing Structures Test 
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Laboratory in Mesa, Arizona. Finally, a ballasted frame called iron-bird, which emulated the 

lightweight helicopter with a complete skid landing gear system and incorporated four MR 

landing gear dampers that were each coupled with a spring-based passive valve, was drop tested 

at Boeing as well (with a total drop mass of 2627 lbs). The bang-bang current control algorithm 

was also used in the iron-bird drop test to regulate the damper force of the MR landing gear 

dampers over the desired sink rate range of 6-26 ft/s. 

5.2 MR and Passive Valve Functions of the Landing Gear Damper 

The schematic diagram of the MR and passive (or relief) valves of the MR landing gear 

damper used in this study is presented in Figure 4.4 of Chapter 4. In this figure, the MR valve 

has one annular single flow path, one center orifice contributing to the spring-assisted relief 

valve, three layers of magnetic coil windings, a spring, and a seal. The spring in the relief valve 

is pre-compressed; therefore, it does not open until the MR valve force develops to a desired 

stroking load of 4000 lbf. The working principle of the MR valve is that, by activating the 

magnetic field input inside the MR valve, the desired stroking load is produced at an equivalent 

sink rate of 6 ft/s. At higher equivalent sink rates of about 11 or 12 ft/s, the MR valve is turned 

off and works as a passive valve to maintain the desired stroking load at 4000 lbf. At this point, 

the spring compresses, and the seal opens for the center orifice to work as an additional fluid 

path. As a result, the damper force reduces because the MR fluid pressure in the center orifice 

drops. 
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5.3 Single Damper Drop Test of the MR Landing Gear Damper with a Spring-Based Passive 

Valve 

5.3.1 Single Damper Drop Test with a Drop Mass of 430 lbs  

5.3.1.1 Setup and Instrumentation 

In order to experimentally evaluate the damper force of the MR landing gear damper with 

a spring-assisted passive valve at higher sink rates, single-drop damper tests were conducted, 

first at the University of Maryland, College Park. The experimental test setup stand was 

constructed, as shown in Figure 5.1. In this first drop testing experiment, the drop mass was 

chosen to be 430 lbs, and starting from a given drop height, the drop mass fell freely along four 

guiding rods. To prevent metal-to-metal impact, a rubber stack was placed on a strike plate 

attached to the damper shaft. A single landing gear damper having an MR valve coupled with a 

coil spring-assisted relief valve and a single landing gear damper having an MR valve coupled 

with a spiral wave spring were drop tested. Several tests and revisions of the relief valve to 

decrease its flow resistance by increasing the diameter of the center orifice were conducted. 

5.3.1.2 Test Results 

In order to decrease the pressure resistance of the center orifice, the diameter size of the 

center orifice was revised a few times. In the revisions, the diameter of the center orifice was 

increased from 0.300 in or 7.62 mm (from the original design in Chapter 4) to 0.375 in or 9.525 

mm, as shown in figure 5.2. 

Figure 5.3 (a) represents the damper force characteristics of the MR landing gear damper 

with the coil relief valve versus the equivalent sink rate, and Figure 5.3 (b) is the maximum 

damper displacement. In this case, the initial gas pressure was 200 psi inside the damper, and the 

MR fluid amount was 690 grams. As shown in Figure 5.3 (a), the coil relief valve MR landing 
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gear damper shows that the maximum operating sink rate range is from 9.5-14 ft/s. This indicates 

that the coil-based landing gear damper performance satisfies neither the low speed nor the high 

speed design targets of maintaining a peak stroking force of 4000 lbf over the desired 6-26 ft/s 

sink rate range. Figure 5.4 (a) illustrates the maximum damper force of the MR landing gear 

damper with the spiral wave relief valve versus the equivalent sink rate. The initial gas pressure 

was also 200 psi, and the MR fluid amount was 665 grams inside the damper. As shown in 

Figure 5.4 (a), the spiral wave spring-based relief valve works well at this tuned gas pressure and 

MR fluid amount. The achievable maximum equivalent sink rate range that can maintain the 

desired damper force level of 4000 lbf is from 6 ft/s to about 16 ft/s. The high speed design target 

is not satisfied due to the limited damper stroke available, as shown in figure 5.4 (b). Within a 

force error bound of ±1000 lbf, the maximum achievable equivalent sink rate range is from 6 ft/s 

to 18 ft/s. The equivalent sink rate, 푉 , , was determined by the following equation: 

푉 , = 2.7 2푔ℎ                                                        [5.1] 

Here, 푔 is the gravitational acceleration, and ℎ  is the initial drop height. A factor of 2.7 was 

used to account for the kinematic relationship between the connection points of the installed MR 

landing gear damper to the fuselage and the landing skid.  

The best performance of the single-drop test was obtained from the spiral wave spring-

based MR landing gear damper, and the low speed design target is satisfied in this case. The 

spiral wave spring based relief valve landing gear damper force better performance over that of 

the coil relief valve case is due to the spiral wave spring more stable transient motion than the 

coil spring because of the axisymmetric shape of the spiral wave spring. 
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5.3.2 Single Damper Drop Test with a Drop Mass of 1287 lbs 

Single MR landing gear damper drop tests were also conducted at the Boeing Structures 

Test Laboratory. Three different landing gear dampers were tested: (1) a landing gear damper 

having only an MR valve without a relief valve (baseline MR landing gear damper), (2) a 

landing gear damper having an MR valve coupled with a coil spring-assisted relief valve, and (3) 

a landing gear damper having an MR valve coupled with a spiral wave spring-assisted relief 

valve. The ballasted drop mass was 1283 lbs for all cases.  

Figure 5.5 shows the maximum achievable equivalent sink rate of the MR landing gear 

dampers. As seen in this figure, the baseline MR landing gear damper achieved the desired 

damper force of 4000 lbf up to the equivalent sink rate of 10 ft/s, but the MR landing gear 

dampers with the spiral wave and coil spring-based relief valves maintained the desired damper 

force up to a higher equivalent sink rate of 18 ft/s. This increase in the maximum achievable 

equivalent sink rate implies that the spiral wave and coil spring-based relief valves operated 

aptly. If a force error bound of ±1000 lbf is specified, then the maximum achievable equivalent 

sink rate of the baseline can be increased from 12 ft/s to 22 ft/s by using either the spiral wave or 

coil spring-relief valves. However, the performance at lower equivalent sink rates of the MR 

landing gear damper with the spiral wave spring-based relief valve was better than that of the 

coil spring-based relief valve. 

5.3.3 Force Feedback Control: Bang-Bang Current Control Algorithm 

At higher sink rates, the MR valve of the landing gear damper is turned off, and only the 

passive valve is in effect; hence, the damping is dominated by passive viscous damping, which is 

proportional to velocity squared. In order to reduce harsh loads transmitted to the helicopter 

fuselage and the passengers, the stroking load must be maintained at or close to the desired 
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stroking load design threshold of 4000 lbf. In this study, in order to maintain the peak stroking 

load of the MR landing gear damper constant over the desired sink rate range of 6-26 ft/s, a 

bang-bang current control algorithm formulated as in Figure 5.6 using a force feedback signal 

was used. 

In the bang-bang current control algorithm, the damper force was measured using a load 

cell, and the control current input was determined by the force error between the desired force 

and the measured damper force. For the bang-bang current control algorithm, the control current 

input is given by the following equation: 

 푖 = 4퐴, 푖푓	(휖퐹 − 퐹) > 0
0퐴, 푖푓	(휖퐹 − 퐹) ≤ 0                                                  [5.2] 

Here, 휖 is the control gain of the bang-bang control. 퐹  is the desired damper force and was set to 

4000 lbf. 퐹 is the actual measured damper force. Additional details of the control algorithm are 

discussed by (Choi et al., 2012). Figure 5.7 presents the controlled damper force of the MR 

landing gear dampers with the spiral wave and coil spring-based relief valves versus the 

equivalent sink rate under the bang-bang current control. In this case, the spiral wave and coil 

spring-based valves produced the same maximum achievable equivalent sink rate of 18 ft/s. 

However, compared to the coil spring case, the spiral wave spring case shows better controlled 

damper force performance at relatively low sink rate range of 14 ft/s or below. Figure 5.8 

illustrates the control gain of the bang-bang current control algorithm. As seen in this figure, the 

spiral wave spring-based relief valve case shows slightly more control sensitivity to the control 

gain compared to the coil spring-based relief valve case. 
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5.3.4 Iron-Bird Drop Test with a Drop Mass of 2627 lbs 

To assess control performance of the MR landing gear systems, further testing of the 

iron-bird setup was conducted. The ballasted drop mass was 2627 lbs. Four MR landing gear 

dampers with spiral wave spring-assisted relief valves were incorporated (Figure 5.9) into the 

iron-bird drop test setup, as shown in Figure 5.10. The assembled spiral wave spring-based MR 

landing gear dampers were initially pressurized at 200 psi of nitrogen gas and were filled with 

665 grams of MR fluid (MRF-132DG from Lord Corporation). In order to verify that all four 

assembled spiral wave spring-assisted MR landing gear dampers had a similar performance and 

prior to incorporating them in the iron-bird apparatus, single damper drop tests were conducted 

on each damper at the University of Maryland, as shown in Figure 5.11. This figure illustrates 

that all four assembled MR landing gear dampers show a similar damper force performance as it 

follows a similar trend as the best selected spiral wave spring-based MR landing gear damper 

single damper drop test performance. After these single damper drop tests were conducted, all 

four dampers were safely setup on the iron-bird drop test apparatus (Figure 5.10), and a front 

view of a basic representation of the iron-bird setup is presented in Figure 5.12 with the iron-bird 

position before impacting the ground, Figure 5.12 (a), and after impact, Figure 5.12 (b). In 

Figure 5.10, the Aft 1 and Aft 2 represent the rear left and right MR landing gear dampers, 

respectively. The Fwd 1 and Fwd 2 represent the front left and right MR landing gear dampers, 

respectively. The center of gravity (C.G.) of the drop mass was evenly balanced, so the ground 

could impact the four MR landing gear dampers equally during the drop test. At each damper top 

position, tri-axial load cells were installed to measure the actual damper force of the MR landing 

gear dampers in three axes. For damper force evaluation and damper force control purpose, only 

axial damper forces were used. At C.G. of the drop mass, an accelerometer was installed to 
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measure the drop acceleration. The damper stoppers were installed to prevent the MR landing 

gear dampers from exceeding the maximum damper stroke of 3.25 inches. 

Figure 5.13 illustrates the maximum damper force at constant current input versus the 

maximum sink rate obtained from the iron-bird drop MR landing gear damper tests and the 

previous single damper drop tests conducted. In this case, the constant current inputs of 0 A and 

4 A were chosen. In addition, the iron-bird drop testing at constant current input was conducted 

up to a sink rate of only 10 ft/s in order to reduce the risk of the testing fixture experiencing a 

failure. As shown in this figure, the iron-bird drop test results of MR landing gear dampers at 

constant current inputs are similar to the results of the single damper drop tests. Hence, single 

damper drop testing is a good method of estimating the damper force performance of the MR 

landing gear damper when compared to the iron-bird drop testing with constant current input 

cases. 

5.3.4.1 Bang-Bang Current Control Algorithm for the Iron-Bird Drop Test 

The bang-bang current control algorithm was used to regulate the damper force of the 

MR landing gear dampers over the desired sink rate range of 6-26 ft/s. In the bang-bang current 

control algorithm, the damper forces were measured using each load cell installed at each 

damper top position, and the control current inputs applied to each MR landing gear damper 

were individually determined by each force error between the desired force and the measured 

damper forces. For the bang-bang current control algorithm, the control current inputs, 푖 , 

applied to the MR landing gear dampers at each damper position are given by:  

 푖 = 4퐴, 푖푓	(휀퐹 − 퐹 ) > 0
0퐴, 푖푓	(휀퐹 − 퐹 ) ≤ 0                                                  [5.3] 
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Here, 푚 = Fwd 1, Fwd 2, Aft 1, Aft 2. The desired damper force, 퐹 , was again chosen to be 

4000 lbf. 퐹  is the actual damper force measured from the load cells at each damper top position. 

In this case, the drop mass sink rate was used. The block diagram of the bang-bang current 

control algorithm for the iron-bird drop test is presented in Figure 5.14.  

Maximum damper forces measured at each damper top location averaged the maximum 

damper force. Figure 5.15 illustrates the maximum damper force under the bang-bang current 

control input versus the maximum sink rate obtained from the iron-bird drop tests using the MR 

landing gear dampers with a spiral wave spring-based relief valve. In this case, the iron-bird drop 

testing was conducted up to a sink rate of 26 ft/s. As shown in this figure, the bang-bang current 

control can maintain the MR landing gear damper force at the desired 4000 lbf over a wide sink 

rate range. If the error bound is ±1000 lbf, which represents a reasonable safety margin, the bang-

bang current control can achieve the desired damper force up to the sink rate of 22 ft/s. 

 Figure 5.16 represents the control gain of the bang-bang current control used in the 

single damper drop and iron-bird drop tests. As seen in this figure, the control gain decreases as 

the sink rate increases. In the iron-bird drop case, the control gain is continuously changed until a 

sink rate of 16 ft/s. But, the control gain of the single damper drop test case is discontinuously 

varied. 

5.4  Conclusions 

In this effort, a full-scale, flow-mode type magnetorheological (MR) landing gear damper 

coupled with a spring-assisted passive (or relief) valve was designed, fabricated, and tested in 

order to expand the high end of the sink rate range from 12 ft/s (from the previous effort by Choi 

et al., 2012) to 26 ft/s while maintaining a stroking load of 4000 lbf over a desired sink rate range 

of 6-26 ft/s. The MR valve of the landing gear damper was designed using a Bingham-plastic 
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type damper model incorporating minor viscous loss factors, which are proportional to velocity 

squared. The spring-assisted relief valve of the landing gear damper was modeled by a single-

degree-of-freedom mass-spring-damper lumped model, which predicted the force behavior of the 

relief valve of the MR landing gear damper to satisfy the desired stroking load of 4000 lbf over 

the sink rate range of 12-26 ft/s. 

From the laboratory tests, it was experimentally investigated that a desired stroking load 

of 4000 lbf was held over a desired equivalent sink rate range of 6 -26 ft/s.  

A single damper drop test setup was built to evaluate stroking loads of the MR landing 

gear damper for sink rates higher than 6 ft/s for a drop mass of 430 lbs first, then 1283 lbs. A 

force feedback control algorithm (bang-bang current control) was also developed. Using this 

force feedback controller, the stroking load was successfully regulated to maintain a constant 

stroking load of 4000 lbf over a 6-18 ft/s equivalent sink rate range. Considering a force error 

bound of ±1000 lbf, the maximum achievable equivalent sink rate range could be increased to 6-

22 ft/s by using either the spiral wave or coil spring-relief valves. The spiral wave spring-relief 

valve performed better than the coil spring-relief valve at lower sink rate range, due to the spiral 

wave spring’s axisymmetric shape around the center axis. For further iron-bird drop damper 

testing, the spiral wave srping-relief valve was chosen. 

From a full-scale iron-bird drop testing (with a total drop mass of 2627 lbs), it was 

experimentally demonstrated that the MR landing gear dampers with a spiral wave spring-based 

relief valve could control the stroking load over a wider range of sink rates.  

The bang-bang current control algorithm successfully regulated the stroking load at 4000 

lbf over a sink rate range of 6-16 ft/s in these iron-bird tests. If a force error bound of ±1000 lbf 

was taken into account, the control was superior over a sink rate range of 6-22 ft/s, which by far 
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exceeds the sink rate range of the previous study (which was 6-12 ft/s). The single damper drop 

testing method was a good damper force estimation procedure as it showed similar testing results 

compared to the iron-bird testing, which emulated a full-scale lightweight helicopter. 
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                                             (a)                                                    (b) 

Figure 5.2. Revison of the center orifice of the relief valve (a) original center orifice diameter: 
0.300 in; (b) revised center orifice diameter: 0.375 in 

 
Figure 5.1. Single MR landing gear damper drop test setup at the University of Maryland 

MR: magnetorheological 

0.300 in 0.375 in 
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(a)                                                                           (b) 

Figure 5.4. Maximum damper force of the MR landing gear damper with (a) spiral wave 
spring-based MR landing gear damper with initial gas pressure of 200 psi; (b) maximum 
damper displacement 

  

     
(a)                                                                        (b) 

Figure 5.3. Maximum damper force of the MR landing gear damper with (a) coil spring-
based MR landing gear damper with initial gas pressure of 200 psi; (b) maximum damper 
displacement 
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Figure 5.6. Block diagram of the bang-bang current control algorithm used for single MR 
landing gear damper drop tests   

        
Figure 5.5. Maximum achievable equivalent sink rate of the MR landing gear dampers within 
a force error bound of ±1000 lbf (the drop mass was 1283 lbs)  
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Figure 5.8. Control gain of the bang-bang current control for the single damper drop test  

        
Figure 5.7. Controlled damper force of the MR landing gear dampers with the spiral wave 
and coil spring-based relief valves versus the equivalent sink rate under the bang-bang current 
control of the single-drop test device  
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Figure 5.10. Experimental iron-bird drop test setup with four MR landing gear dampers 
coupled with spiral wave spring-assisted passive (or relief) valves 

        
Figure 5.9. Photograph of the four spiral wave spring-based MR landing gear dampers used 
for the iron-bird drop test 
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                                       (a)                                                                             (b) 

        
                                       (c)                                                                             (d) 
Figure 5.11. Maximum damper force versus maximum equivalent sink rate obtained from the single 
MR landing gear damper drop tests of all four spiral wave spring-based dampers at the University 
of Maryland with a drop mass of 430 lbs (a)-(d) are performances of spiral wave spring-based 
dampers 1 through 4, respectively. 
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   (a) 

 
   (b) 

Figure 5.12. Basic front view representation of the iron-bird drop test setup (a) pre-impact: 
MR damper is extended; (b) post-impact: MR damper is compressed 
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Figure 5.14. Block diagram of the bang-bang current control algorithm used for iron-bird MR 
landing gear dampers drop tests   
  

        
Figure 5.13. Maximum damper force at constant current input versus sink rate obtained from 
the iron-bird drop tests conducted at Boeing Structures Test Laboratory 
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Figure 5.16. Control gain of the bang-bang current control versus sink rate for the single 
damper and iron-bird drop tests 
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Figure 5.15. Maximum damper force under the bang-bang current control input versus the 
maximum sink rate obtained from the iron-bird drop tests using the MR landing gear dampers 
with a spiral wave spring-based relief valve 
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CHAPTER 6: Nonlinear Modeling of Adaptive 

Magnetorheological Landing Gear Dampers with a Spring-

Assisted Passive Valve under Impact Conditions  

6.1 Introduction and Overview 

The landing performance of a lightweight helicopter can be improved with adaptive 

landing gear dampers by continuously adjusting their stroking loads to provide shock mitigation 

capabilities and accommodate various operating conditions. In prior work, adaptive landing gear 

dampers have been investigated (Choi et al., 2012; Choi and Wereley, 2003; Mikulowski and 

Holnicki-Szulc, 2007; Batterbee, et al., 2007a; Batterbee et al., 2007b; Lin et al., 2009; 

Mikulowski and LeLetty, 2008). Adaptive magnetorheological (MR) landing gear dampers for a 

lightweight helicopter that maintained a constant peak stroking force of 4000 lbf across sink rates 

ranging from 6-12 ft/s (1.8-3.7 m/s) were designed, fabricated and successfully tested (Choi et 

al., 2012). In this follow-on effort, it was desired to expand the high end of the sink rate range, so 

that the peak stroking load could be held constant for sink rates ranging from 6-26 ft/s (1.8-7.9 

m/s), thereby extending the high end of the speed range from 12 ft/s in the first study to 26 ft/s. A 

spring-based passive (or relief) valve MR landing gear system that has a constant cracking 

pressure was proposed for this study. In the prior chapter, we theoretically proposed and 

analyzed a bang-bang current control algorithm, formulated using a force feedback signal to 

maintain the peak stroking load of the MR landing gear damper constant over the desired sink 

rate range of 6-26 ft/s. The analysis was conducted using a single-degree-of-freedom (SDOF) as 

a modeling approach. Simulation results of the model showed that the stroking load was 

successfully regulated to maintain a constant stroking load of 4000 lbf over a 6-18 ft/s equivalent 
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sink rate range. Considering a force error bound of ±1000 lbf, the maximum achievable 

equivalent sink rate range could be increased to 6-22 ft/s by using either the spiral wave or coil 

spring-relief valves. 

This chapter focuses on better understanding the behavior of the MR landing gear damper 

coupled with a spiral wave spring-assisted passive valve operating over the range of 6 -26 ft/s. 

Two models are examined in this study. The first one (model #1) is a nonlinear Bingham-Plastic 

(BP) type damper model incorporating the pressure drop due to the spring-assisted relief valve 

seal’s opening, the MR valve minor loss factors, Darcy friction and viscous forces, which are 

proportional to the velocity squared. The second model (model #2) is a modified version of the 

first model as it considers, in addition to the pressure drop due to the relief valve seal’s opening, 

the pressure drop across the center orifice of the relief valve to better account for the damper 

force behavior at higher speeds.  This model includes minor loss factors, Darcy friction and 

viscous forces across the MR valve and the center orifice of the relief valve. In addition, the gas 

pressure inside the MR damper is considered; hence, the total force of the MR landing gear 

damper with a spiral wave spring-assisted relief valve includes the gas force.  

These models were experimentally validated using single damper drop test data obtained 

from the drop tower facility at Boeing Structures Test Laboratory in Mesa, Arizona for nominal 

drop speeds of up to 26 ft/s / 2.7 (shaft velocity of 2.9 m/s). The dividing factor of 2.7 accounts 

for the kinematic relationship between the connection points of the MR landing gear damper to 

the fuselage and the landing skid as explained in chapter 5 section 5.3.1.2. 

6.2 MR Valve Coupled with a Spring-Assisted Relief Valve  

A full-scale, flow-mode type MR valve landing gear damper coupled with a spring-

assisted passive valve that has a constant cracking pressure was developed to expand the high 
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end of the sink rate range from 12 ft/s, from prior work (Choi et al., 2012), to 26 ft/s while 

maintaining a stroking load of 4000 lbf over a desired sink rate range of 6-26 ft/s. The MR valve 

as designed to semi-actively control the peak stroking load over the 6-12 ft/s sink rate range, 

while the passive valve was designed to passively control the stroking load over the 12-26 ft/s 

sink rate range. The MR valve of the landing gear damper was designed using a nonlinear 

analytical Bingham-Plastic (BP) type damper model considering the field dependent behavior of 

MR fluids and nonlinear viscous loss factors that are dependent on velocity squared. The passive 

valve was designed based on a computer simulation related to spring dynamic equations of 

motion, which estimated the force behavior of the passive valve of the MR landing gear damper 

to meet the desired stroking load of 4000 lbf over the desired sink rates of 12-26 ft/s. A spring-

based passive valve MR landing gear damper was designed using the MR damper analysis then 

constructed. Two different springs were used (a conventional coil spring and a spiral wave 

spring) for the analysis. Based on better testing results obtained from the spiral wave spring-

based MR landing gear damper, the spiral wave spring was selected for further testing of the MR 

landing gear damper in the iron-bird drop test apparatus at the Boeing Structures Test Laboratory 

in Mesa, Az. 

6.3  Nonlinear Bingham Plastic-Type Modeling with Viscous Effects and Minor Losses in the 

Landing Gear Damper MR Valve Only (Model #1) 

A hydraulic model of the MR and passive relief valves of the landing gear damper is 

presented in Figure 6.1. The routinely used Bingham-plastic (BP) model, which assumes a 

laminar flow range for all involved MR landing gear damper piston velocities, was extended to a 

nonlinear (turbulent) flow range, which is induced from high speed impact loadings. The MR 
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landing gear damper total force, 퐹 , in the BP-type nonlinear model incorporating turbulent flows 

is given by: 

퐹 = 퐴 ∆푃																																																																				[6.1]                                                            

Here, 퐴  is the effective piston area of the MR landing gear damper, and ∆푃 is the pressure drop 

across the valves. 

6.3.1 Passive Relief Valve Closed 

Relevant equations of the spring-assisted relief valve are revisited from Chapter 4. When 

the passive valve is closed, the seal closes the center orifice of the spring-assisted relief valve. 

Hence, the MR fluid passes only through the MR valve as shown in Figure 6.1 (a). The following 

equations then apply: 

∆푃 = 	 ∆푃 																																																																	[6.2]                                                            

∆푃 = 	 																																																															[6.3]                                                            

푄 = 퐴 푉 = 푄 																																																								[6.4]                                                

푄 = 0																																																																			[6.5]                                                             

∆푃  is the pressure drop through the MR valve, and ∆푃  is the pressure drop across the 

relief valve. 푄  is the total flow rate passing through the piston, and 푉  is the piston velocity. 

푄  is the flow rate passing through the MR valve, and  푄  is the flow rate passing through 

the relief valve. Here, the pressure drop through the MR valve, ∆푃 , is derived from the BP-

type nonlinear damper model incorporating minor loss factors, which are proportional to velocity 

squared, and the equation is given as follows: 

∆푃 = 	 푛푓
휌(퐿 + 퐿 )

4푑
푄
퐴 +

휌 퐾 + 퐾
2

푄
퐴 +

2푛퐿 휏
푑 												[6.6] 
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Here, 휌 is the density of the MR fluid, 퐿  is the active MR valve length associated with one 

magnetic coil winding, and 퐿  is the length of one magnetic coil winding. 퐴  is the flow area of 

the MR valve; 푛 is the number of magnetic coil windings, and 푑  is the gap diameter of the MR 

valve. In Equation 6.6, there are minor losses due to the MR fluid flowing through an entrance 

and exit of the MR valve gap, which causes a sudden contraction and expansion of the flow. 

These minor losses represent additional energy dissipation in the flow, which generates 

additional pressure drop across the MR valve. Prior experimental work by Mao et al. (2013) 

demonstrated that minor losses are significant in flow behavior, especially at high piston 

velocities. 퐾 		and 퐾  in Equation 6.6, are the minor loss factors in the MR valve 

associated with sudden entrance and exit effects, respectively. In this study, it was assumed that 

퐾 = 0.7 and 퐾 = 0.5 (White, 1986; Ideľchik, 1994; Franzini and Finnemore, 1997; 

Spurk and Aksel, 2008).  

The Darcy friction factor, 푓, is a piecewise continuous function of the Reynolds number, 

푅푒, and detailed equations are given in the reference by Choi, Yoo, and Wereley (2005b). In the 

laminar flow range, the Darcy friction factor is computed as: 

푓 =
96
푅푒 , 푖푓	푅푒	 ≤ 2300																																																							[6.7] 

The Reynolds number is defined as follows: 

푅푒 =
휌푉퐷
휂 																																																																[6.8] 

푉	is the average velocity of the flow passing through the MR valve gap, and 휂 is the MR fluid 

viscosity. It is important to note that the critical Reynolds number is chosen to be 2300 to ensure 

a laminar flow range for all 푅푒 < 2300 (Spurk and Aksel, 2008). To render the analysis simpler 

in this study, the MR valve annular flow path was approximated as a rectangular duct. Hence, the 



www.manaraa.com

129 
 

hydraulic diameter, 퐷 , for a rectangular duct is obtained from (White, 1986, Franzini and 

Finnemore, 1997) the following equation: 

퐷 = 2푑 																																																																			[6.9]                                                                 

In the turbulent flow range, the Darcy friction factor is computed as:  

1
푓 . ≈ 1.8 log

휀
3.7퐷

.
+

6.9
4000 , if	푅푒 > 4000 																									[6.10] 

Here, 휀, is the average wall roughness in the MR valve gap and is assumed to be 0.006 mm in 

this study to represent a smooth condition. Since there is no defined equation to calculate the 

friction factor, 푓, in the transition flow case from laminar to turbulent (2300 < 푅푒 ≤ 4000), the 

convex combination (Slotine and Li, 1991) was used to compute the Darcy friction factor in this 

transitional region as follows: 

푓 = (1− 훼)
96
푅푒 + 훼

1

1.8 log 휀
3.7퐷

.
+ 6.9

4000

, if	2300 < 푅푒	 ≤ 4000									[6.11] 

Here, the parameter, 훼, is expressed as: 

훼 =
푅푒 − 2300

4000− 2300 																																																											[6.12] 

Finally, in Equation 6.6, 휏  is the MR fluid yield stress (Wereley and Pang, 1998; Mao et al., 

2005). 

6.3.2 Passive Relief Valve Open  

When the relief valve is open, the seal opens the center orifice of the relief valve, which 

allows the MR fluid to pass through the MR valve as well as the center orifice. As a result, the 

damper force decreases because the MR fluid pressure in the center orifice drops; hence, the 

following equations apply: 

∆푃 = ∆푃 = ∆푃 																																																					[6.13] 
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푄 = 푄 + 푄 																																																							[6.14] 

The pressure drop of the relief valve, ∆푃 , is determined by the pressure drop due to the  

seal’s opening as follows (Merritt, 1967; Choi et al., 2005b): 

∆푃 =
휌푄

2 퐴 퐶
																																																						[6.15] 

It is important to note in this first model that Equation 6.15 is held under the assumption that the 

diameter of the center orifice is sufficiently large that its pressure drop is negligibly smaller than 

the pressure drop due to the valve being open. Here, the discharge coefficient, 퐶 , is given by: 

퐶 =
퐶 퐶

1 − 퐶
퐴
퐴 	

																																																								[6.16] 

where 퐶  is the velocity coefficient (퐶  = 1), and 퐶  is the contraction coefficient (퐶  = 0.611) 

(Merritt, 1967). In addition, 퐴  is the flow area of the opened relief valve orifice, and is 

calculated by: 

퐴 = 휋푑 푥																																																														[6.17] 

where 푑  is the center orifice diameter and 푥 is the displacement of the seal.  

6.3.2.1 Single-Degree-of-Freedom Mass Spring Damper Lumped Model  

Using a single DOF mass-spring-damper lumped model shown in Figure 6.2, the 

displacement of the seal was calculated by numerically solving the following equation 

푀푥̈ + 푐푥̇ + 푘푥 = 퐹
퐴
퐴 − 퐹 																																																[6.18] 

where																																																		퐹 =
퐴
퐴 4000	푙푏 																																																							[6.19] 
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Here, 푀 is the mass of the seal, and 푐 is the damping of the spring, 푘 is the stiffness of the 

spring, and 퐴  is the cross-sectional area of the center orifice. 

6.3.2.2 Calculation of Flow Rates  

The flows at each path depend on the pressure drop, and the fluid resistances are 

nonlinear functions of flow rates. The flow rates 푄  and 푄  are not directly determined 

from the total flow rate, 푄 . Therefore, a numerical iteration method (Choi et al., 2005b) was 

used to calculate each flow rate. First, the iteration method begins with guessing the initial flow 

rates as follows: 

푄 =
푄
2 	and	푄 =

푄
2 																																															[6.20] 

Using Eq. 6.6 with initial flow rates 푄  and 푄 , the new flow rate, 푄  is computed as 

follows: 

푄 = 퐴 퐶
2∆푃 |

휌 																																								[6.21] 

 

Where ∆푃 |  is obtained by replacing 푄  with 푄  in Eq. 6.6. Then, it is necessary to 

calculate the error of the estimated total flow rate as follows: 

푄 + 푄 − 푄 ≤ 훾																																														[6.22] 

Here, 훾 is the predefined error. If the error of the estimated total flow rate is not smaller than the 

predefined error, then the new initial flow rate, 푄 , of the MR valve needs to be increased or 

decrease by: 

푄 = (1 ± 훿)푄 																																																					[6.23] 

Here, 훿 is the convergence rate of the estimation to the flow rate.  
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6.3.3 Design of the Spring-Assisted Passive Valve of the MR Landing Gear Damper 

The predicted damper force of the MR landing gear damper with the spring-based passive 

valve was estimated to meet the desired stroking load of 4000 lbf over the desired sink rate range 

of 6 to 26 ft/s using equations 6.1 to 6.23. Figure 6.3 represents the predicted damper force 

versus sink rate. For each case, a half-sine function was theoretically calculated to simulate the 

piston velocity of the MR landing gear damper as shown in Figure 6.4. The maximum sink rate 

of this particular case is 26 ft/s (7.9 m/s). A spring stiffness of 푘	 = 	50	푙푏 /푖푛 (8.75 N/mm) was 

chosen. As illustrated in Figure 6.3, the damper force (퐹 ) generated by the activating the MR 

valve can theoretically meet the desired stroking load of 4000 lbf at the low sink rate of 6 ft/s. 

Then, at higher sink rate, the MR landing gear damper theoretically meets the desired stroking 

load by turning the MR valve off and releasing additional MR fluid by cracking the pressure 

when the center orifice relief valve opens up. 

6.4 Single Damper Drop Tests 

In order to experimentally evaluate the force of the MR landing gear damper with the 

passive relief valve at higher sink rates and emulate impact conditions, single damper drop tests 

were conducted using a drop tower facility at the Boeing Structures Test Laboratory in Mesa, 

Arizona. One set of tests was conducted using a landing gear damper having an MR valve only 

(baseline), and another set of tests was conducted using a landing gear damper having an MR 

valve coupled with a spiral wave spring-assisted relief valve. These two tests are considered for 

the analysis in this chapter. The dampers were pressurized at 200 psi, and the ballasted drop mass 

was 1283 lbs. The equivalent sink rate, 푉 . , was determined by the following equation:  

푉 . = 2.7 2푔ℎ 																																																					[6.24]                                
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Here, 푔 is the gravitational acceleration, and ℎ  is the initial drop height. A factor of 2.7 was 

used to emulate the kinematic correlation between the skid of a helicopter and the location of the 

installed MR landing gear damper.  

Data from the load cell and the LVDT (Linear Variable Differential Transformer) were 

recorded with a sampling rate of 1 kHz. The LVDT data were differentiated by the data 

acquisition system to produce the velocity data. A second-order low-pass Butterworth filter with 

a 100 Hz cutoff frequency was used to filter the recorded load cell data for force evaluation and 

the LVDT data for damper stroke and velocity evaluations of the MR landing gear damper with 

spring-assisted relief valve. 

6.5 Drop Test Results and Predicted Results from Model #1 

The predicted damper piston velocity in equation 6.25 and illustrated in Figure 6.4 was 

utilized to estimate velocity time histories from the drop test:  

푉 (푡) = 푉 sin
휋푡
푡 																																																														[6.25] 

Here,  푉  is the initial impact velocity obtained from the initial condition, and 푡  is the duration 

of the impact event. Filtered sample test data are shown in Figures 6.5 through 6.7. As illustrated 

in Figure 6.8, the predicted velocity response was plotted versus the actual velocity data, it is 

important to note that the impact of 6 ft/s (1.83 m/s) occurred at 50 ms. Other velocity peaks 

observed before 50 ms from the actual data are noise related. The modeled velocity predicts the 

actual velocity time history well.  

The predicted MR landing gear damper force time histories of were obtained from the 

nonlinear BP-type model (model #1) and plotted versus the actual transient force responses. 

Figures 6.9 (a) and (b) show the experimental force results of the baseline damper at a nominal 
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speed of 6 ft/s for the field-OFF and the field-ON cases plotted versus the predicted force time 

responses. The predicted damper force response from model #1 (nonlinear BP-type model with 

viscous effects and minor losses in the MR valve gap) tends to under predict the damper force 

for the field-OFF case. The maximum damper force is well captured for the field-ON case in 

Figure 6.9 (b); however, the modeled force does not seem to capture the effect of a time delay 

occurring in the actual experimental force data. In Figures 6.10 (a) and (b), the predicted force 

response tends to slightly under predict the MR landing gear damper experimental field-OFF 

force during the impact period at 6 ft/s. For the field-ON case, as the model tends to slightly over 

predict the total damper force time history, it does not emulate the time delay occurring in the 

actual filtered test data similarly to the baseline damper field-ON case. At a sink rate of 16 ft/s 

(4.9 m/s) in Figures 6.11 (a) and (b), the nonlinear model #1 predicts well the maximum damper 

force response for the field-OFF case; however, for the field-ON case, the model under predicts 

the maximum damper force. At higher sink rates of 22 and 26 ft/s (6.7 m/s and 7.9 m/s, 

respectively) in Figures 6.12 (a) and (b), the model does not capture higher forces, and it 

estimates a peak force of about 4500 lbf (20,017 N) for the spiral wave spring-based damper 

force while the actual peak force is around 5000 lbf (22,241 N) for 22 ft/s and 6000 lbf and 

(26,689 N) for 26 ft/s. The BP-type model #1 significantly under predicts the peak damper force 

by about 25% at a sink rate of 26 ft/s.  

6.6 Nonlinear Bingham Plastic-Type Modeling with Viscous Effects and Minor Losses in the 

MR and Relief Valves (Model #2) 

6.6.1 Pressure Drop across the Center Orifice of the Relief Valve 

In the previous model #1, it was assumed that the center orifice diameter,	푑 , of the MR 

landing gear damper relief valve was sufficiently large that the pressure drop across the center 
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orifice was negligibly smaller than the pressure drop due to the seal’s opening. The first model 

simulated results showed that higher forces were not well captured. Hence, in this second model, 

the assumption is reconsidered. The pressure drop across the relief valve, ∆푃 , is now 

produced from the pressure drop due to the seal’s opening as well as the viscous and minor loss 

effects in the center orifice as shown in Figure 6.13. Hence, Equation 6.15 is modified as 

follows: 

∆푃 =
휌푄

2(퐴 퐶 ) + 푓
휌퐿
2푑

푄
퐴 +

휌(퐾 . + 퐾 . )
2

푄
퐴 						[6.26] 

In Equation 6.26, 퐿  is the center orifice length, and 푓  is the Darcy friction factor considered 

from the center orifice, which satisfies Equations 6.7 to 6.12; however, in Equation 6.9, the 

hydraulic diameter is replaced with 푑 , the diameter of the center orifice of the passive valve: 

																																																																			퐷 = 푑 																																																																			[6.27] 

Minor losses due to the MR fluid flowing through the entrance and exit of the center 

orifice of the relief valve cause a sudden contraction and expansion of the flow. These minor 

losses represent additional energy dissipation in the flow, which generates additional pressure 

drop across the center orifice of the relief valve. 퐾 .  and 퐾 .  in Equation 6.26, are the 

minor loss factors in the center orifice of the relief valve associated with sudden entrance and 

exit effects, respectively. In this study, it was assumed that 퐾 . = 0.7 and 퐾 . = 1 (Merritt, 

1967). The total minor loss factor is expressed in Equation 6.28: 

퐾 . = 퐾 . + 퐾 . 																																																				[6.28] 

In order to facilitate flow rates calculation, Equation 6.26 is expressed in the following 

form: 

∆푃 =
휌푄

2푑
푑 퐴 + [푓 퐿 + 푑 (퐾 . )](퐴 퐶 )

(퐴 퐴 퐶 ) 																		[6.29] 
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6.6.1.1 Calculation of Flow Rates  

As the flow at each path depends on the pressure drop and fluid resistances are nonlinear 

functions of flow rates, the flow rates 푄  and 푄  are calculated through a numerical 

iteration method (Choi et al., 2005b). The iteration method starts with estimating the initial flow 

rates as in equation 6.20, then using equation 6.6 with initial flow rates 푄  and 푄 . The 

new flow rate, 푄  is subsequently computed as follows: 

푄 = 퐴 퐴 퐶
2푑
휌

∆푃 |

푑 퐴 + 푓 퐿 + 푑 (퐾 . ) 퐴 퐶
								[6.30] 

∆푃 |  is obtained from replacing 푄 	in Equation 6.6 with 푄 . It is essential to 

calculate the error of the estimated total flow rate as in equation 6.22, and if the error of the 

estimated total flow rate is not smaller than the predefined error, 훾, then the new initial flow rate, 

푄 , of the MR valve needs to be increased or decreased by equation 6.23. 

6.6.2 Time Constant 

In order to emulate time delay in the damper yield force (field-dependent damper force) 

for practical application, the pressure drop associated with the MR fluid yield stress is assumed 

to pass through a low-pass filter as follows: 

∆푃̇ =
∆푃 	
휏 −

∆푃
휏 																																																		[6.31] 

Here, ∆푃  is the emulated pressure drop associated with the MR fluid yield stress, and 휏  is 

the time constant of the MR damper. In table 6.1, key parameters used in this study for the spiral 

wave spring-based MR landing gear damper are specified. Time constants of MR dampers are 

usually dependent on the MR fluid viscosity and density as well as the geometry of the MR valve 
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(Choi and Wereley, 2002), and are in the range of 5-10 ms. The pressure drop associated with the 

MR fluid yield stress is defined in the following equation: 

∆푃 =
2푛퐿 휏
푑 																																																													[6.32] 

The pressure drop associated with the MR fluid yield stress, ∆푃 , was substituted by ∆푃  in 

Equation 6.6, which in turn, affects the simulated response of the total damper force, 퐹 , in 

Equation 6.18. 

6.6.3 Theoretical Analysis of the Gas Pressure 

From the first set of single damper drop tests conducted at the University of Maryland, 

College Park, the initial gas pressure of the MR damper was increased to 200 psi to handle 

impact loadings of sink rates higher than 12 ft/s (3.7 m/s). Thus, for the set of tests conducted at 

the Boeing Structures Test Laboratory in Mesa, Arizona, initial gas pressure effect on the spring 

force was theoretically calculated. In order to simplify the analysis, the fully extended MR 

landing gear damper with the spring-assisted relief valve was divided into two control volumes 

that indicated the volume chambers where the gas pressure had an effect, as shown in Figure 

6.14. By applying Boyle’s law (Mao et al., 2013) to chamber # 2, assuming isothermal 

conditions, the spring force, 퐹 , due to the gas pressure of the MR landing gear damper can be 

determined by the following equation: 

퐹 = 퐴 푃
푉

푉 − 퐴 푆 																																																						[6.33] 

Here, 푃  is the initial gas pressure inside the MR damper and 푉  is the initial gas volume: 

푉 = 퐴 푙 																																																															[6.34] 

where	푙 = 	4.86푒 푚. 
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Here, 푙  is the length of chamber #2. In Equation 6.33, 푆 is the MR damper piston stroke, which 

is the same as the damper piston displacement, 푦 , in Figure 6.14. The damper stroke, 푆, is in the 

range of 0 to 8.26 cm (0 to 3.25 inches) and is estimated by integrating piston velocity, 푉 , in 

Equation 6.35: 

푆(푡) = 푉
푡
휋 1 − cos

휋푡
푡 																																																[6.35] 

Moreover, the piston area, 퐴 , is expressed as: 

퐴 =
휋퐷

4 																																																															[6.36] 

where	퐷 = 5.36푒 	푚	(or	2.11	푖푛). 

Using a single DOF mass-spring-damper lumped model, the displacement of the seal was 

calculated by numerically solving equation 6.18 with the following equation for the total damper 

force, 퐹 , shown below: 

퐹 = 퐴 ∆푃 + 퐹 																																																													[6.37]  

6.7 Drop Test Results and Predicted Results from Model #2 

The actual force responses from the drop tests were plotted versus the predicted force 

time histories using the modified nonlinear BP-type model with the viscous effects and minor 

losses across the MR and passive relief valves, in addition to the gas force (model #2). Utilizing 

the predicted piston velocity, Figures 6.15 (a) and (b) show that model #2 estimates the 

maximum damper force well (within 1% for the field-OFF case and 7.2% for the field-ON case) 

for the baseline MR landing gear damper. Figures 6.16 (a) and (b) show that model #2 tends to 

slightly over estimate the MR landing gear damper field-OFF-and-ON forces during the impact 

period at 6 ft/s for the spiral wave spring-assisted MR landing gear damper. For the field-ON 

case, as the model tends to slightly over predict the total damper force time history, it also 
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emulates the time delay occurring in the actual experimental data. At the end of the impact, the 

predicted results in Figures 6.15-6.18 all account for the gas force, which make the damper force 

decrease slowly then level off as the end of the landing event approaches. At a sink rate of 16 

ft/s, model #2 tends to over predict the maximum force time history for the field-OFF case in 

Figure 6.17 (a) but captures the maximum damper force response very well for the field-ON case 

in Figure 6.17 (b). At higher sink rates of 22 ft/s (6.7 m/s) in Figure 6.18 (a) and 26 ft/s (7.9 m/s) 

in Figure 6.18 (b), model #2 captures higher forces very well (within 7%). The model #2 predicts 

the actual results better than model #1.  

6.8  Conclusions 

This chapter focused on the effectiveness of two nonlinear models to predict the 

performance of MR landing gear dampers over sink rates ranging from low (6 ft/s or 1.8 m/s) to 

high speed (26 ft/s or 7.9 m/s) impact conditions.  

Two models were investigated using the drop test data conducted at the Boeing 

Structures Test Laboratory in Mesa, Arizona of both MR landing gear dampers with an MR 

valve only (baseline) and with a spiral wave spring-assisted passive valve. The first model was a 

nonlinear Bingham-Plastic (BP)-type flow model incorporating viscous effects and minor loss 

factors only across the MR valve of the landing gear damper (model #1). The second model was 

a modified version of the nonlinear BP-type flow model, incorporating viscous effects and minor 

loss factors across both the MR and passive relief valves of the landing gear damper (model #2); 

also, a force was included in the analysis that accounted for the gas pressure in the gas over oil 

oleo configuration used here.  

On the one hand, results demonstrated that model #1 could not accurately predict the 

baseline and spiral wave spring-assisted passive valve MR landing gear dampers force behavior 



www.manaraa.com

140 
 

for the field-OFF case, but the model was able to predict the maximum damper force behavior 

for the field-ON case at a low sink rate of 6 ft/s. Further impact speeds examination showed that 

model #1 could not adequately predict higher forces at sink rates higher than 16 ft/s as the model 

under predicted the damper force by about 25% at high sink rate of 26 ft/s. In addition, model #1 

was not accounting for the time delay occurring in the actual experimental data for the field 

dependent damper force behavior and the effect of the gas force.  

On the other hand, model #2 was more useful than model #1 as it captured the baseline 

and spiral wave spring-assisted MR landing gear dampers force histories from the drop test data 

more accurately.  The second model (model #2) accounted for the time delay occurring in actual 

data as well as the gas force. The model accurately described the MR landing gear dampers force 

responses at sink rates ranging from 6 ft/s to 26 ft/s for the Field-OFF and ON cases while 

capturing the maximum damper forces at higher impact speeds of 26 ft/s within 7% for the field-

OFF case. Model #2 predicted the landing gear damper behavior more accurately than model #1 

because model #2 reconsidered the assumption held by model #1 that the diameter of the center 

orifice was big enough, so that its pressure drop is negligibly smaller than the pressure drop due 

to the seal’s opening. Model #2 considered and included the pressure drop across the passive 

relief valve center orifice in addition to the pressure drop across the MR valve, which allowed 

for a better prediction of high-speed forces. 

References 

Batterbee, D.C., Sims, N.D., Stanway, R., and Wolejsza, Z., (2007a) Magnetorheological landing 

gear: 1. A design methodology. Smart Materials and Structures, 16: 2429-2440. DOI: 

10.1088/0964-1726/16/6/046. 



www.manaraa.com

141 
 

Batterbee, D.C., Sims, N.D., Stanway, R., and Rennison, M., (2007b) Magnetorheological 

landing gear: 2. Validation using experimental data. Smart Materials and Structures, 16: 

2441-2452. DOI: 10.1088/0964-1726/16/6/047. 

Choi, Y.-T., and Wereley, N.M., (2002) Comparative analysis of the time response of 

electrorheological and magnetorheological dampers using nondimensional parameters. 

Journal of Intelligent Material Systems and Structures, 13(7/8): 443-451. DOI: 

10.1106/104538902028557. 

Choi, Y.-T., and Wereley, N.M., (2003) Vibration control of a landing gear system featuring 

ER/MR fluids. AIAA Journal, 40(3): 432–439. DOI: 10.2514/2.3138. 

Choi, Y.-T., Yoo, J.H., and Wereley, N.M., (2005b) Double adjustable magnetorheological 

dampers for a gun recoil system. International Mechanical Engineering Congress and 

Exposition (IMECE), Orlando, FL, USA. 

Choi, Y.-T., Robinson, R., Hu, W., Wereley, N.M., Birchette, T.S., and Bolukbasi, A.O., (2012) 

Analysis and control of a magnetorheological landing gear system for a helicopter.  

Proceedings of the American Helicopter Society 68th Annual Forum & Technology 

Display, Fort Worth, TX, USA. 

Franzini, J.B., and Finnemore, E.J., (1997) Fluid Mechanics with Engineering Applications, 

McGraw Hill. 

Ideľchik, I.E., (1994) Handbook of Hydraulic Resistance, 3rd Edition, CRC Press, FL, USA. 

Lin, L.H., Yong, C., Qi, H., and Jian, L., (2009) Fuzzy PID control for landing gear based on 

magnetorheological (MR) damper. International Conference on Apperceiving Computing 

and Intelligence Analysis (ICACIA), 22-25. DOI: 10.1109/ICACIA.2009.5361162. 



www.manaraa.com

142 
 

Mao, M., Choi, Y.-T., and Wereley, N.M., (2005) Effective design strategy for a 

magnetorheological damper using a nonlinear flow model. Proceedings of SPIE, 5760: 

446-455. DOI: 10.1117/12.601061. 

Mao, M., Hu, W., Wereley, N.M., Browne, A.L., Ulicny, J.C., and Nancy, J., (2013) A nonlinear 

analytical model for magnetorheological energy absorbers under impact conditions. 

Journal of Intelligent Material Systems and Structures, 22(115015): 1-12. DOI: 

10.1088/0964-1726/22/11/115015. 

Merritt, H.E., (1967) Hydraulic Control Systems. John Wiley & Sons, New York, USA. 

Mikulowski, G.M., and Holnicki-Szulc, J., (2007) Adaptive landing gear concept- feedback 

control validation. Smart Materials and Structures, 16: 2146-2158. DOI: 10.1088/0964-

1726/16/6/017. 

Mikulowski, G.M., and LeLetty, R., (2008) Advanced landing gears for improved impact 

absorption. Proceedings of the 11th International Conference on New Actuators, 363-

366, Bremen, Germany. 

Slotine, J.J.E., and Li, W., (1991) Applied Nonlinear Control. New Jersey, Prentice-Hall, 283-

284. 

Spurk, J.H., and Aksel, N., (2008) Fluid Mechanics, 2nd Edition. Springer-Verlag, Berlin 

Germany. DOI 10.1007/978-3-540-73537-3. 

Wereley, N.M., and Pang, L., (1998) Nondimensional analysis of semi-active electro- and 

magneto-rheological dampers using parallel plate models. Smart Materials and 

Structures, 7: 732-743. DOI: 10.1088/0964-1726/7/5/015. 

White, F.M., (1986) Fluid Mechanics, 2nd Edition, McGraw-Hill, Ohio, USA. 

 



www.manaraa.com

143 
 

 
 

 
 
 

 
(a)                                                                      (b) 

Figure 6.2. Hydraulic model of the MR and passive valves of the MR landing gear damper: 
(a) Relief valve is closed and the MRF only flows through the MR valve; (b) Relief valve is 
open and the MRF flows through two paths: the MR valve and the center orifice relief valve 

MRF: Magnetorheological fluid 

 
              (a)                                                 (b) 

Figure 6.1. Schematic and cross-sectional view of the MR valve coupled with a spring-
assisted passive (or relief) valve in the landing gear damper for a lightweight helicopter; (a) 
passive valve closed and (b) passive valve open 

MR: Magnetorheological 
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Figure 6.4. A half-sine predicted piston velocity for a 50 ms event duration at a nominal 
speed of 26 ft/s (7.9 m/s)   
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Figure 6.3. Predicted damper force of the relief valve of the MR landing gear damper versus 
sink rate with a desired spring stiffness of 50 lbf/in (8.76 kN/m) 
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Figure 6.6. Transient piston velocity response at a nominal drop speed of 6 ft/s (1.8 m/s)   
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Figure 6.5. Transient impact force response at a nominal drop speed of 6 ft/s (1.8 m/s)   
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Figure 6.8. Predicted velocity time histories versus filtered experimental velocity data 
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Figure 6.7. Transient piston displacement response measured with an LVDT at a nominal 
drop speed of 6 ft/s (1.8 m/s)   
 

0 0.05 0.1 0.15 0.2
0

1

2

3

4

Time (s)

D
am

pe
r s

tro
ke

 (i
n)

 

 

I = 0 A



www.manaraa.com

147 
 

 

 

 

 
(a)                                                                    (b)                      

Figure 6.10. Transient force responses of the spiral wave-assisted MR landing gear damper 
(equipped with an MR valve and a passive valve) versus time at a nominal drop speed of 6ft/s 
versus simulated results of model #1. Cases: (a) field-OFF; (b) field-ON  
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(a)                                                                    (b)  

Figure 6.9. Transient force responses of the baseline MR landing gear damper (equipped with 
an MR valve only) versus time at a nominal drop speed of 6 ft/s versus simulated results from 
model #1. Cases: (a) field-OFF; (b) field-ON   
Model #1: nonlinear Bingham Plastic (BP)-type model with viscous effects and minor losses 
in the MR valve gap 
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(a)                                                                       (b) 

Figure 6.12. Transient force responses of the spiral wave-assisted MR landing gear damper 
(equipped with an MR valve and a passive valve) versus time at a nominal drop speed of (a)  
field-OFF case at 22 ft/s and (b) field-OFF case at 26 ft/s versus simulated results of model 
#1  
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(a)                                                                    (b) 

Figure 6.11. Transient force responses of the spiral wave-assisted MR landing gear damper 
(equipped with an MR valve and a passive valve) versus time at a nominal drop speed of 
16ft/s versus simulated results of model #1. Cases: (a) field-OFF; (b) field-ON 
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Figure 6.14. Schematic of the control volumes where the gas force has an effect in the MR 
landing gear damper with spiral wave spring-assisted relief valve  
 

 
Figure 6.13. Hydraulic model of the MR and passive valves of the MR landing gear damper: 
(a) relief valve is closed; (b) relief valve is open and the pressure 푃  across the center orifice 
is considered 
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                                         (a)                                                                     (b) 
Figure 6.16. Transient force responses of the spiral wave-assisted MR landing gear damper 
(equipped with an MR valve and a passive valve) versus time at a nominal drop speed of 6ft/s 
versus simulated results of model #2. Cases: (a) field-OFF; (b) field-ON  
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                                         (a)                                                                     (b) 
Figure 6.15. Transient force responses of the baseline MR landing gear damper (equipped 
with an MR valve only) versus time at a nominal drop speed of 6 ft/s versus simulated results 
from model #2. Cases: (a) field-OFF; (b) field-ON 
Model #2: modified nonlinear Bingham Plastic (BP)-type model with viscous effects and 
minor losses in the MR valve gap and the center orifice relief valve + gas force 
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                                         (a)                                                                     (b) 
Figure 6.18. Transient force responses of the spiral wave-assisted MR landing gear damper 
(equipped with an MR valve and a passive valve) versus time at a nominal drop speed of (a) 
field-OFF case at 22 ft/s and (b) field-OFF case at 26 ft/s versus simulated results of model 
#2. 
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                                         (a)                                                                     (b) 
Figure 6.17. Transient force responses of the spiral wave-assisted MR landing gear damper 
(equipped with an MR valve and a passive valve) versus time at a nominal drop speed of 16 
ft/s versus simulated results of model #2. Cases: (a) Field-OFF; (b) field-ON  
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Table 6.1.: Key parameters of the MR landing gear damper with a spiral wave spring-based 
passive valve 

Mass of the seal, 푀 in kg (lbs) 0.05 (0.11) 

Actual spiral wave spring stiffness, 퐾 in 
kN/m (lbf/in) 

10.47 (59.8) 

Damping ratio, 휁 1.8 

Time constant, 휏 in ms 7 

Maximum allowable seal displacement 
in mm (inches) 

5.08 (0.2) 
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CHAPTER 7: Conclusions and Future Work 

This chapter summarizes the work conducted in this study. The primary results and 

research contributions are highlighted and suggestions are made for the extension of this work to 

future studies. 

7.1 Conclusions 

Since their introduction, magnetorheological fluids (MRFs) and MRF devices have 

provided solution to many engineering challenges. Moreover, the large success of MRFs 

continues to motivate current and future applications. MRF application to landing gear systems 

have been considered, but studies on the feasibility of utilizing an MRF that comprise important 

characteristics to preserve in landing gear fluid certification and rotorcraft application have not 

yet been fully investigated. This research focused on MRFs suitability to be applied to 

lightweight helicopter landing gear systems by mixing a desired MRF with low off-state 

viscosity (to keep viscous forces as low as possible at high sink rates), large yield force (for MR 

device controllability), and stability (easily remixed to prevent fluid stratification leading to poor 

performance). In addition, this research concentrated on efforts to achieve landing performance 

challenge to maximize operating sink rate range of a lightweight helicopter by designing, 

manufacturing, and testing adaptive MR landing gear dampers coupled with a nonconventional 

spiral wave spring-based passive valve. The main objective of this dissertation was to improve 

landing gear systems performance of a lightweight helicopter.  

7.1.1 Magnetorheological Fluids Study 

In the MRF study part of this dissertation, MRFs were synthesized using different carrier 

hydraulic oils certified for landing gear use, and the feasibility of these MRFs, to see if they 
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qualify for use in landing gear systems, was assessed. A series of sample MRFs were synthesized 

for different solid loadings (vol% of iron, Fe, particles) using landing gear hydraulic fluids as the 

carrier fluids: MIL-H-5606, MIL-PRF-83282, and MIL-PRF-87257. A lecithin surfactant was 

used to maintain the suspension and to prevent particle agglomeration. These synthesized MRFs 

were also compared to commercially available MRFs from Lord Corporation with comparable 

solid loadings. 

First, magnetorheological properties were tested as a function of applied field, and the 

experimental data were characterized using the Bingham Plastic (BP) model. The yield stress and 

viscosity of the MRF composites, using flow curve data, were identified. The MR landing gear 

fluid composite compared favorably with a commercial MRF (both containing 26 vol% magnetic 

particles). 

Second, a particle sedimentation study was performed on the MRFs synthesized using an 

inductance coil-based sedimentation rate monitoring system. Hence, particle dispersion stability 

was effective, and redispersion showed similar results, even though fluids were left inactive for 

over a month. 

Third, the performance of a linear stroke MR damper, filled with the synthesized MRFs, 

was characterized using a Nonlinear BiViscous (NBV) model. The NBV model was used to 

successfully identify the yield force. MR damper behavior was compared to that of the damper 

including a commercial MRF of the same solid loadings (of 32 vol% particle concentration). The 

yield forces of the MRFs containing particles in the size range of 6-10 µm Fe particles (32 vol%) 

compared favorably with that of the commercial MRFs, and measured yield forces of the MR 

damper with either MRF were within 5% of each other. 
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Synthetic oil-based MRF (of 32 vol% Fe particles) was utilized in an MR damper and 

underwent high shear rate drop testing to experimentally verify the tuning nature of the MR 

device at different impact velocities and magnetic field strengths. Hence, the peak stroking force 

and energy dissipated by the MR damper strongly depended on the changes in the magnetic field 

strengths.  

Based on this range of tests used to characterize MRFs synthesized using certified 

landing gear fluids in this study, it was shown that it is feasible to use such hydraulic oils as the 

carrier fluids in model MRFs to develop landing gear applications. In addition, because the 

commercially available fluids have comparable performance, the LORD Corp. MRFs were later 

used in the development of landing gear oleos in this dissertation. 

In the continued study of MRFs in this dissertation, the behavior of two MRFs with 

different compositions was investigated. The first fluid (MRF-37) had 35.7 vol% of iron Fe 

powder, 4.3 vol% glass beads, and 60 vol% of carrier fluid. The second fluid (MRF-40) had 40 

vol% of Fe powder, and 60 vol% of carrier fluid. Based on this study, the following conclusions 

were made:  

 MRF-37 (with glass beads) showed a substantial increase in yield force in the as-mixed 

fluid damper cycling tests. The yield force more than doubled in the damper tests at high 

field strengths (here 2 to 3 A in the electromagnet) suggesting that nonmagnetic fillers 

can substantially increase damper yield force. 

 MRF-37 (with passive particles or glass beads) had an off-state viscosity 22% greater 

than the MRF-40 (no glass beads). 

 After subjecting MRF-37 to endurance testing (518,400 cycles of sinusoidal loading at 4 

Hz), the yield force enhancement effect was eliminated because the glass beads were 
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crushed to very small sizes. This further supports the conclusion that the passive particles 

(glass beads) are the strong contributing factor to the damper yield force enhancement. 

 MRF-37 would provide a lower specific gravity fluid with a much higher damper yield 

force at full field, thereby providing performance improvements for applications where 

the MR device is intended for single or infrequent use.  

7.1.2 Magnetorheological Fluids Devices and Application 

In the MR device and application section of this dissertation, an adaptive MR landing 

gear damper with a spring-assisted passive (relief) valve for a lightweight helicopter was 

designed to maintain a constant peak stroking force of 4000 lbf across sink rates ranging from 6-

26 ft/s. It was desired to expand the high end of the sink rate range from 12 ft/s from a prior 

study (Choi et al., 2012) to 26 ft/s, while preserving low speed force levels. To achieve this 

increase in the high end of the sink rate range, the adaptive landing gear damper developed in 

this study was equipped with an MR valve that was designed to semi-actively control the peak 

stroking load over the 6-12 ft/s sink rate range and a spring-assisted passive (or relief) valve that 

was designed to passively control the stroking load over the 12-26 ft/s sink rate range.  

The MR valve was designed using a nonlinear analytical damper model or Bingham-

plastic model that depended on the behavior of MR fluids and nonlinear viscous factors. The 

passive relief valve was designed based on a computer simulation related to spring dynamic 

equations of motion, which estimated the damper force behavior to meet the desired stroking 

load of 4000 lbf over the desired sink rate range of 12-26 ft/s.  

A nonlinear analysis based on the pressure drop across the MR valve and the passive 

relief valve center orifice was conducted to estimate the center orifice diameter range. The 

optimal diameter of the center orifice was calculated to be 0.3 inches (7.62 mm).  
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Two different springs were used (a conventional coil spring and a spiral wave spring) for 

the analysis and construction of the passive valve. Moreover, an electromagnetic analysis of the 

MR valve in the landing gear damper using the commercial software ANSYS was performed to 

predict the magnetic field strength in the MR gap while taking into consideration the center 

orifice diameter selected.  

An experimental study using a material testing system (MTS) machine was performed to 

evaluate the damper force behavior of the spiral wave and coil spring-based MR landing gear 

dampers to verify that the relief valve operated properly. A dummy bobbin was designed, 

fabricated, and tested using ramp damper tests due to the speed limitation of the servo-hydraulic 

testing machine. In these ramp tests, instead of the electromagnetic coil winding that activates 

the MR valve, the dummy bobbin was used for comparison purposes and to check if the relief 

valve in the spiral wave and coil spring based MR landing gear dampers worked correctly. Using 

the MTS machine, the stroking load (or damper force) of the MR landing gear damper coupled 

with a spring-assisted relief valve was measured for constant velocity inputs to verify that the 

spring-based relief valve was working appropriately. Three different damper configurations: a 

dummy bobbin with no relief valve, a bobbin with a spiral wave spring-based relief valve, and a 

bobbin with a coil spring-based relief valve were tested. At a constant velocity of 5.25 ft/s (1.6 

m/s), the no relief valve case showed higher damper force performance (around 5000 lbf) than 

the spiral wave and coil spring-based MR landing gear damper cases, which remained around 

4400 lbf. This implies that the spiral wave and coil spring-based relief valves were opening and 

keeping the stroking load constant, hence the relief valves were working properly. Also, the 

spiral wave spring-based MR landing gear damper case showed more stable transient behavior, 

which could be due to the fact that the spiral wave spring was axisymmetric hence well balanced 
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around its center axis compared to the coil spring. This stable behavior of the spiral wave spring 

based MR landing gear damper made it more attractive than the coil spring based damper, so that 

the spiral wave spring was used for the rest of the study. 

After verifying that the prototype of the MR landing gear damper worked appropriately, a 

full-scale, flow-mode type MR landing gear damper coupled with a spring-assisted passive (or 

relief) valve was designed, fabricated, and drop tested in order to experimentally demonstrate the 

extension of the high end of the sink rate range from 12 ft/s (from the previous effort by Choi et 

al., 2012) to 26 ft/s while maintaining a stroking load of 4000 lbf over a desired sink rate range 

of 6-26 ft/s.  

From the laboratory tests, it was experimentally investigated that a desired stroking load 

of 4000 lbf was held over a desired equivalent sink rate range of 6 -26 ft/s.  

A single damper drop test apparatus was built to evaluate stroking loads of the MR 

landing gear damper for sink rates higher than 6 ft/s for a drop mass of 430 lbs first, then 1283 

lbs. A force feedback control algorithm (bang-bang current control) was also developed. Using 

this force feedback controller, the stroking load was successfully regulated to maintain a constant 

stroking load of 4000 lbf over a 6-18 ft/s equivalent sink rate range. Considering a force error 

bound of ±1000 lbf, the maximum achievable equivalent sink rate range could be increased to 6-

22 ft/s by using either the spiral wave or coil spring-relief valves. The spiral wave spring-relief 

valve performed better than the coil spring-relief valve at lower sink rate range, due to the spiral 

wave spring’s axisymmetric shape around the center axis. For further iron-bird drop damper 

testing, the spiral wave spring-relief valve was selected. 

From a full-scale iron-bird drop testing (with a total drop mass of 2627 lbs), it was 

experimentally demonstrated that the MR landing gear dampers with a spiral wave spring-based 
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relief valve could control the stroking load over a wider range of sink rates. The bang-bang 

current control algorithm successfully regulated the stroking load at 4000 lbf over a sink rate 

range of 6-16 ft/s in these iron-bird tests. If a force error bound of ±1000 lbf was taken into 

account, the control was superior over a sink rate range of 6-22 ft/s, which by far exceeds the 

sink rate range of the previous study (which was 6-12 ft/s). The single damper drop testing 

method was a good damper force estimation procedure as it showed similar testing results 

compared to the iron-bird testing, which emulated a full-scale lightweight helicopter. 

Finally, the effectiveness of two nonlinear models that predicted the performance of MR 

landing gear dampers over sink rates ranging from low (6 ft/s or 1.8 m/s) to high speed (26 ft/s or 

7.9 m/s) impact conditions was considered.  

Two models were experimentally investigated using the drop test data at the Boeing 

Structures Test Laboratory in Mesa, Arizona with two MR landing gear dampers: one with an 

MR valve only (baseline) and the other with a spiral wave spring-assisted passive valve. The first 

model was a nonlinear BP-type flow model incorporating viscous effects and minor loss factors 

only across the MR valve of the landing gear damper (model #1). The second model was a 

modified version of the nonlinear BP-type flow model, incorporating viscous effects and minor 

loss factors across both the MR and passive relief valves of the landing gear damper (model #2); 

also, a gas force was included in the analysis.  

On the one hand, results demonstrated that model #1 could not accurately predict the 

baseline and spiral wave spring-assisted passive valve MR landing gear dampers force behavior 

for the field-OFF case, but the model was able to predict the maximum damper force behavior 

for the field-ON case at a low sink rate of 6 ft/s. Further impact speeds examination showed that 

model #1 could not effectively predict higher forces at sink rates higher than 16 ft/s as the model 
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under predicted the damper force by about 25% at high sink rate of 26 ft/s. In addition, model #1 

was not accounting for the time delay occurring in the actual experimental data for the field 

dependent damper force behavior and the effect of the gas force.  

On the other hand, model #2 was more practical than model #1 as it captured the baseline 

and spiral wave spring-assisted MR landing gear dampers force histories from the drop test data 

more precisely.  The second model (model #2) accounted for the time delay occurring in actual 

data as well as the gas force. The model accurately described the MR landing gear dampers force 

responses at sink rates ranging from 6 ft/s to 26 ft/s for the Field-OFF and ON cases while 

capturing the maximum damper forces at higher impact speeds (of 26 ft/s) within 7% for the 

field-OFF case. Model #2 predicted the landing gear damper behavior more accurately than 

model #1 because model #2 reconsidered the assumption held by model #1 that the diameter of 

the center orifice was big enough, so that its pressure drop is negligibly smaller than the pressure 

drop due to the seal’s opening. Model #2 actually considered and included the pressure drop 

across the passive relief valve center orifice in addition to the pressure drop across the MR valve, 

which allowed for a better prediction of high-speed forces while still predicting low-speed forces 

accurately. 

7.2 Original Contributions 

In the MRF investigation of this dissertation, MRFs were developed using certified 

landing gear hydraulic oils, and it was demonstrated in this study that these fluids are suitable 

MRFs and applicable to landing gear systems. The synthesized MRFs performance is 

comparable to commercial MRFs. 

The yield force performance of an MRF was doubled by substituting magnetic for 

passive particles (hollow glass beads). The MRF specific gravity was reduced; however, this 
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MRF is more for applications where the MR device is used infrequently because of passive 

particle deterioration over time. 

In the MR devices and application segment of this dissertation, a practical MR landing 

gear system, which combines an MR valve with a spring-assisted passive valve, was developed. 

The operating sink rate range (from 6-22 ft/s) was maximized while maintaining a peak stroking 

force of about 4000 lbf across the desired sink rate range. There was a substantial increase from 

12 ft/s (from a previous study directly related to this work by Choi et al., 2012) to 22 ft/s. In 

addition, a model combining an MR valve with a spring-assisted relief valve and a gas reservoir 

was experimentally validated under impact loads with equivalent sink rates ranging from 6-26 

ft/s, which corresponds to piston velocities ranging from 2.2-9.6 ft/s. The model was able to 

match the peak impact loads.   

7.3 Future Work 

Throughout  the  course  of  this  work,  several  topics,  beyond  the  scope  of  this  

current research, were encountered. Additional work remains to be completed before MRFs can 

be certified for use in helicopter landing gear systems. In what follows, a brief discussion of 

those topics is provided. While the initial results are promising, further investigation of several 

key areas of the MRF behavior itself as well as the MR landing gear device that encloses the 

fluid, is warranted.  

MRFs that were synthesized using different carrier hydraulic oils (MIL-H-5606, MIL-

PRF-83282, and MIL-PRF-87257) certified for landing gear use, were subjected to a series of 

tests for characterization purposes in order to assess the feasibility of these MRFs to substantiate 

their potential qualification for use in landing gear systems. To extend this work to future 

studies, additional testing is warranted to ensure that the addition of particle solids and 
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surfactants does not affect key properties of the hydraulic carrier fluids such that operating 

temperature range and resistance to flammability are preserved in landing gear applications. For 

instance, the synthesized MRFs could benefit from large range of operating temperature testing 

in a flow mode damper to ensure that the properties of the synthesized MRF inside the damper 

are not severely affected due to damping change and self-heating. In addition, high shear (higher 

than 1000 s-1) and high velocity investigation of the synthesized MRFs can also be useful due to 

the fact that MRF behavior at high shear is largely governed by the carrier oil; consequently, the 

carrier fluid can also be evaluated at high shear rates. 

In the continued study of MRFs, the substitution of nonmagnetic particles for magnetic 

CI particles in MRFs was investigated in the context of MR dampers or flow mode devices. Two 

MRF samples (MRF-40 and MRF-37) were synthesized and a comparative study of their 

characteristics was conducted to determine the impact of the nonmagnetic glass beads on MRF 

(yield stress and sedimentation rate) and MR damper (yield force and post-yield damping) 

performance. Although the results were promising due to the ability to provide a lower specific 

gravity fluid (MRF-37) with a much higher damper yield force at full field, thereby providing 

performance improvements for applications where the MR device is intended for single or 

infrequent use, concerns were raised during the endurance test as particles eroded due to 

extensive cycling. To expand this work to future studies, and for cases where extensive cycling 

would be required, more durable passive fillers that are not subject to erosion, as glass beads are, 

would be more appropriate. Further study (Klingenberg and Ulicny, 2011) is also needed to 

better describe the underlying physics contributing to the yield force enhancement in the MR 

damper when using MRF with glass beads. 
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In the MR device and application section of this dissertation, an adaptive MR landing 

gear damper with a nonconventional spiral wave spring-assisted passive (relief) valve for a 

lightweight helicopter was successfully designed, fabricated, and tested. The device was able to 

maintain a constant peak stroking force of 4000 lbf across sink rates ranging from 6-22 ft/s using 

a bang-bang current control algorithm. Although the desired sink rate range was originally 6-26 

ft/s, the maximum operating sink rate range achieved in this current study represented a 

substantial increase from 12 ft/s (from a previous study directly related to this work by Choi et 

al., 2012) to 22 ft/s. This current follow-on effort was considerable; however, the maximum sink 

rate capability can be revisited for future work. Due to the limited geometry of the existing MD 

500 landing gear damper used as the test bed in this study, the maximum sink rate capability was 

limited as well. A new damper design with an optimized geometry needs to be considered to 

achieve higher sink rates while maintaining the same constant stroking load throughout the sink 

rate range. 
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